A COMPUTE! Books Publication $12.95

MAGHINE
LANGUAGE

_FOR
BEGINNERS

Personal Computer Machine Language
Programming For The Atari, VIC,
Apple, Commodore 64, And PET/

CBM " Computers

Machine Language For Beginners

““Most books about machine language assume a con-
siderable familiarity with both the details of microprocessor chips
and with programming techniques. This book only assumes a
working knowledge of BASIC. It was designed to speak directly
to the amateur programmer, the part-time computerist. It should
help you make the transition from BASIC to machine language
with relative ease.”’

— From The Introduction

Contains everything you need to learn 6502 machine language
including:
® A dictionary of all major BASIC words and their machine
language equivalents. This section contains many sample
programs and illustrations of how all the familiar BASIC
programming techniques are accomplished in machine
language.
® A complete Assembler program which supports pseudo-
ops, forward branches, two number systems, and number
conversions. It can easily be customized following the step-
by-step instructions to make it perform any functions you
want to add.

® A Disassembler program with graphic illustrations of
jumps and subroutine boundaries.

® An easy-to-use number chart for quick conversions.

® Memory maps, monitor extensions, and all 6502 com-
mands arranged for easy reference.

® Many clear, understandable examples and comparisons
to already familiar BASIC programming methods.

ISBN 0-942386-11-6 $12.95

MAGHINE
LANGUAGE

Machine Language Programming

For BASIC Language Programmers

Richard Mansfield

COMPUTE! Publications, Inc obd

A Subsidiary Of American Broadcasting Compan:es, Inc

Greensboro, North Carolina

““A few entry points, onginal/upgrade ROM” and ““Plotting With the CBM 2022 Printer”’
were onginally published in COMPUTE' Magazine, January/February 1980, copynght
1980, Small System Services, Inc “BASIC 4 0 Memory Map” and “PET 4 0 ROM
Routines” were ongally published m COMPUTE' Magazine, November/December
1980, copynght 1980, Small System Services, Inc “More VIC Maps” was originally pub-
lished in COMPUTE! Magazine, March 1982, copyright 1982, Small System Services, Inc
”Commodore 64 Memory Map” was ongmnally published m COMPUTE' Magazine,
October 1982, copynght 1982, Small System Services, Inc "“Shoot”” was ongtnally pub-
lished m COMPUTE' Magazine, September 1981, copyright 1981, Small System Services,
Inc “SUPERMON A Primary Tool For Machine Language Programming™ was onginally
published tn COMPUTE'! Magazine, December 1981 copynght 1981, Small System
Services, Inc “MICROMON An Enhanced Machine Language Monttor” was ongtnally
published in COMPUTE ' Magazne, January 1982, copynight 1982, Small System Services,
Inc “VIC Micromon” was ongnally published in COMPUTE' Magazine, November
1982, copynght 1982, Small System Services, Inc ““Supermon 64" was onginally published
i COMPUTE’ Magazine. January 1983, copynght 1983, Small System Services, Inc

Copynight © 1983, Small System Services, Inc All rights reserved

Reproduction or translation of any part of this work beyond that permtted by Sections
107 and 108 of the United States Copyright Act without the permussion of the copyright
owner 1s unlawful

Printed 1n the United States of America

ISBN 0-942386-11-6

1098765432

Table of Contents

Preface v
Introduction — Why Machine Language? vii
Chapter |: How To Use ThisBook I
Chapter 2: The Fundamentals 7
Chapter 3: TheMonitor 23
Chapter 4: Addressing. 37
Chapter 5: Arithmetic. 53
Chapter 6: The InstructionSet 63
Chapter 7: Borrowing fromBASIC 9l
Chapter 8: Building AProgram 97
Chapter 9: ML Equivalents

OfBASICCommands 121
Appendices
A:lnstructionSet 149
B:Maps 167
C: Assembler Programs 223
D: Disassembler Programs 237
E:Number Charts 243
F: Monitor Extensions. 253
G:TheWedge 335
Index 339

m

Preface

Something amazing lies beneath BASIC.

Several years ago I decided to learn to program in
machine language, the computer’s own language. I
understood BASIC fairly well and I realized that it was simply
not possible to accomplish all that I wanted to do with my
computer using BASIC alone. BASIC is sometimes just
too slow.

I faced the daunting (and exhilarating) prospect of
learning to go below the surface of my computer, of finding out
how to talk directly to a computer in its language, not the
imitation-English of BASIC. I bought four books on 6502
machine language programming and spent several months
practicing with them and puzzling out opcodes and
hexadecimal arithmetic, and putting together small machine
language programs.

Few events in learning to use a personal computer have
had more impact on me than the moment that I could instantly
fill the TV screen with any picture [wanted because of a
machine language program I had written. I was amazed at its
speed, but more than that, I realized that any time large
amounts of information were needed on screen in the future —
it could be done via machine language. I had, in effect, created
anew BASIC ““‘command’” which could be added to any of my
programs. This command — usinga SYS or USR instruction to
send the computer to my custom-designed machine language
routine — allowed me to have previously impossible control
over the computer.

BASIC might be compared to a reliable, comfortable car. It
will get you where you want to go. Machine language is like a
sleek racing car — you get there with lots of time to spare.
When programming involves large amounts of data, music,
graphics, or games — speed can become the single most
important factor.

After becoming accustomed to machine language, I
decided to write an arcade game entirely without benefit of

BASIC. It was to be in machine language from start to finish. I
predicted that it would take about twenty to thirty hours. It
was a space invaders game with mother ships, rows of aliens,
sound . . . the works. It took closer to 80 hours, but I am
probably more proud of that program than of any other I've
written.

AfterI'd finished it, I realized that the next games would
be easier and could be programmed more quickly. The
modules handling scoring, sound, screen framing, delay, and
player/enemy shapes were all written. I only had to write new
sound effects, change details about the scoring, create new
shapes. The essential routines were, for the most part, already
written for a variety of new arcade-type games. When creating
machine language programs you build up a collection of
reusable subrotitines. For example, once you find out how to
make sounds on your machine, you change the details, but not
the underlying procedures, for any new songs.

The great majority of books about machine language
assume a considerable familiarity with both the details of
microprocessor chips and with programming technique. This
book only assumes a working knowledge of BASIC. It was
designed to speak directly to the amateur programmer, the
part-time computerist. It should help you make the transition
from BASIC to machine language with relative ease.

This book is dedicated to Florence, Jim, and Larry. I
would also like to express my gratitude to Lou Cargile for his
many helpful sugpestions; to Tom R. Halfhill and Charles
Brannon of the COMPUTE! Magazine editorial staff for their
contributions — both direct and indirect — to this book; and to
Robert Lock and Kathleen Martinek for their encouragement,
comments, and moral support. And special thanks to Jim
Butterfield for his maps, programs, and constant encourage-
ment to everyone who dec1des to learn 6502 machine language
programming.

Introduction

Why Machine Language?

Sooner or later, many programmers find that they want to learn
machine language. BASIC is a fine general-purpose tool, but it has its
limitations. Machine language (often called assembly language)
performs much faster. BASIC is fairly easy to learn, but most
beginners do not realize that machine language can also be easy.
And, just as learning Italian goes faster if you already know Spanish,
if a programmer already knows BASIC, much of this knowledge will
make learning machine language easier. There are many similarities.

This book is designed to teach machine language to those who
have a working knowledge of BASIC. For example, Chapter 9 is a list
of BASIC statements. Following each is a machine language routine
which accomplishes the same task. In this way, if you know what you
want to do in BASIC, you can find out how to do it in machine
language.

To make it easier to write programs in machine language (called
““ML’’ from here on), most programmers use a special program called
an assembler. This is where the term “’assembly language’’ comes
from. ML and assembly language programs are both essentially the
same thing. Using an assembler to create ML programs is far easier
than being forced to look up and then POKE each byte into RAM
memory. That's the way it used to be done, when there was too little
memory in computers to hold languages (like BASIC or Assemblers) at
the same time as programs created by those languages. That old style
hand-programming was very laborious.

There is an assembler (in BASIC) at the end of this book which
will work on most computers which use Microsoft BASIC, including
the Apple, PET/CBM, VIC, and the Commodore 64. There is also a
separate version for the Atari. It will let you type in ML instructions
(like INC 2) and will translate them into the right numbers and POKE
them for you wherever in memory you decide you want your ML
program. Instructions are like BASIC commands; you build an ML
program using the ML ““instruction set.”” A complete table of all the
6502 ML instructions can be found in Appendix A.

It’s a little premature, but if you're curious, INC 2 will increase
the number in your computer’s second memory cell by one. If the
number in cell 2 is 15, it will become a 16 after INC 2. Think of it as
““increment address two. "’

v

Introduction

Program 1-4. 64 Version.

Newer model 64's need to have the color registers set before running this program
to see the effect on the full screen.

1 REM COMMODORE 64 VERSION

800 FOR AD=40000T040019:READDA:POKE
AD,DA:NEXTAD

805 PRINT"SYS 40000 TO ACTIVATE"

810 DATAl69,1,160,0,153,0 L

820 DATA4,153,0,5,153,0 v

830 DATA6,153,0,7,200,208 4

840 DATA241,96

Program |-5. Apple Version.

106 FOR I = 778 TO 789: READ A: POKE I,A: NE
XT
116 PRINT "CALL 774 TO ACTIVATE "

128 DATA 169,129,162,6,157,9,4,157,9,5,157,0
+6,157,0,7,202,208,241,96

Program 1-6. Atari Version.

1908 FOR I=1536 TO 1561:READ A:POKE I,A:NEXT I
114 PRINT "A=USR(1536) TO ACTIVATE "

120 DATA 165,88,133,0,165,89,133,1,169

130 DATA 33,162,4,160,8,145,0,299,208,251,230
149 DATA 1,202,208,244,104,96

After running this program, type the SYS or USR or CALL as
instructed and the screen will instantly fill. From now on, when we
mention SYS, Atari owners should mentally substitute USR and
Apple owners should think CALL.

BASIC stands for Beginners All-purpose Symbolic Instruction
Code. Because it is all-purpose, it cannot be the perfect code for any
specific job. The fact that ML speaks directly to the machine, in the
machine’s language, makes it the more efficient language. This is
because however cleverly a BASIC program is written, it will require
extra running time to finish a job.

For example, PRINT involves BASIC in a series of operations
which ML avoids. BASIC must ask and answer a series of questions.
Where is the text located that is to be PRINTed? Isit a variable? Where

X

Introduction

1s the variable located? How long is it? Then, it must find the proper
location on the screen to place the text. However, as we will discover,
ML does not need to hunt for a string variable. And the screen
addresses do not require a complicated series of searches in an ML
program. Each of these tasks, and others, slow BASIC down because
it must serve so many general purposes. The screen fills slowly
because BASIC has to make many more decisions about every action
1t attempts than does ML.

Inserting ML For Speed

A second benefit which you derive from learning ML is that your
understanding of computing will be much greater. On the abstract
level, you will be far more aware of just how computers work. On the
practical level, you will be able to choose between BASIC or ML,
whichever is best for the purpose at hand. This choice between two
languages permits far more flexibility and allows a number of tasks to
be programmed which are clumsy or even impossible in BASIC.
Quite a few of your favorite BASIC programs would benefit from a
small ML routine, ‘’inserted’’ into BASIC with a SYS, USR, or CALL,
to replace a heavily used, but slow, loop or subroutine. Large sorting
tasks, smooth animation, and many arcade-type games must involve
ML.

BASIC Vs. Machine Language

BASIC itself is made up of many ML programs stored in your
computer’s Read Only Memory (ROM) or sometimes loaded into
RAM from disk. BASIC is a group of special words such as STOP or
RUN, each of which stands for a cluster of ML instructions. One such
cluster might sit in ROM (unchanging memory) just waiting for you
to type LIST. If you do type in that word, the computer turns control
over to the ML routine which accomplishes a program listing. The
BASIC programmer understands and uses these BASIC words to
build a program. You hand instructions over to the computer relying
on the convenience of referring to all those pre-packaged ML routines
by their BASIC names. The computer, however, always follows a
series of ML instructions. You cannot honestly say that you truly
understand computing until you understand the computer’s
language: machine language.

Another reason to learn ML is that custom programming is then
possible. Computers come with a disk operating system (DOS) and
BASIC (or other “"higher-level”’ languages). After a while, you will
likely find that you are limited by the rules or the commands available
in these languages. You will want to add to them, to customize them.
An understanding of ML is necessary if you want to add new words
to BASIC, to modify a word processor (which was written in ML), or
to personalize your computer — to make it behave precisely as you
want it to.

Introduction

BASIC’s Strong Points

Of course, BASIC has its advantages and, in many cases, is to be
preferred over ML. BASIC is easier to analyze, particularly because it
often includes REM statements which reveal the functions of the
program’s parts. REMs also make BASIC easier to modify. This could
make it the language of choice if the program must frequently be
partially rewritten or updated to conform to changing conditions. For
example, a program which calculates a payroll might well have at the
beginning a series of data statements which contain the tax rates.
BASIC DATA statements can be easily altered so that the program
will reflect the current rates. If the payroll program runs fast enough
in BASIC, there is no advantage to translating it into ML.

BASIC s also simpler to debug (to get all the problems ironed out
so that it works as 1t should). In Chapter 3 we will examine some ML
debugging techniques which work quite well, but BASIC is the easier
of the two languages to correct. For one thing, BASIC often just
comes out and tells you your programming mistakes by printing out
error messages on the screen.

Contrary to popular opinion, ML is not necessarily a memory-
saving process. ML can use up about as much memory as BASIC does
when accomplishing the same task. Short programs can be somewhat
more compact in ML, but longer programs generally use up bytes fast
in both languages. However, worrying about using up computer
memory is quickly becoming less and less important. In a few years,
programmers will probably have more memory space available than
they will ever need. In any event, a talent for conserving bytes, like
skill at trapping wild game, will likely become a victim of technology.
It will always be a skill, but it seems as if it will not be an everyday
necessity.

So, which language is best? They are both best — but for
different purposes. Many programmers, after learning ML, find that
they continue to construct programs in BASIC, and then add ML
modules where speed is important. But perhaps the best reason of all
for learning ML is that it is fascinating and fun.

How To Use This Book

Although anyone wishing to learn 6502 machine language (ML) will
likely find this book instructive and worthwhile, the specific example
programs are written to work on five popular personal computers:
Apple, Atari, VIC, Commodore 64, and the PET/CBMs. If your
computer uses the 6502 microprocessor, but is not one of these
machines, you will need to find a "“memory map’’ for your particular
machine. These maps — widely available in books and magazines,
and from user groups — will allow you to follow and practice with the
examples of 6502 machine language throughout this book.

In particular, there are several memory addresses which are
used in many of the examples presented in this book. Their addresses
are given for the five computers mentioned above, but if you have a
different computer, you should look them up in a map of your
machine:

103 1. “"Which key is pressed?’’ This is an address, usually somewhere
in the first 256 addresses, which is always holding the value of the
most recently pressed key on the keyboard.

york 2. Starting Address of RAM Screen Memory. This is the address in
your computer where, if you POKEd something into it from BASIC,
you would see the effect in the upper left-hand corner of your screen.

i 10 3. Print a Character. This address is within your BASIC ROM
memory itself. It is part of the BASIC language, but written in ML. It
is the starting address of a routine which will put a character on the
screen.

w5t 4 Geta Character. Also part of BASIC in ROM memory, this ML

_routine accepts a character from the keyboard and stores it.

BL\ 5. A safe place. You must know where, in your computer, you

¢ can construct ML programs without interfering with a BASIC
program or anything else essential to the computer’s normal
operations. The best bet is often that memory space designed to serve
the cassette player called the cassette buffer. While practicing, you
won'’t be using the cassette player and that space will be left alone by
the computer itself.

Here are the answers to give the Simple Assembler (Appendix
C) when it asks for " Starting Address.”’ These are hexadecimal

Jumbers about which we’ll have more to say in the next chapter. For
&h"}p now, if you've got an Atari, type in 0600. If you use a PET/CBM,
g@’& answer 0360. For VIC or Commodore 64, type: 0340. If you have an

| How To Use This Book

Apple, use 0300. For other computers, you'll need to know where
there are about 100 RAM memory addresses that are safe.

All through this book, the examples will start at various arbitrary
addresses (1000, 2000, 5000, for example). You should substitute the
addresses which are safe in your computer. Just as it doesn’t matter
whether you start a BASIC program at line number 10 or line 100, it
makes no difference whether a ML program starts at address 1000 or
0340, as long as you are putting it in a safe memory zone.

So, start all of the examples you assemble for practice in the
same convenient, safe memory location for your machine. In fact, the
Simple Assembler (SA) was designed to be modified and customized.
See the introduction to Appendix C for more detailed instructions on
customizing. Because you can make the SA conform to your needs,
you might want to replace the line with the INPUT that requests the
starting address (variable SA) with a specific address. In this way,
you can work with the examples in the book without having to
specify the safe address each time.

The First Step: Assembling

Throughout this book there are many short example ML programs.
They vary in length, but most are quite brief and are intended to
illustrate a ML concept or technique. The best way to learn something
new is most often to just jump in and do it. Machine language
programming is no different. Machine language programs are written
using a program called an assembler, just as BASIC programs are
written using a program called ‘‘BASIC.”

In Appendix C there is a program called the *’Simple
Assembler.”” Your first step in using this book should be to type in the
Microsoft version; it will work correctly on all personal computers
using Microsoft BASIC. (If you have an Atari, type in the Atari
version.)

Once you've typed this program into your computer, you can
save it to tape or disk and use it whenever you want to construct a ML
program. The example ML routines in this book should be entered
into your computer using the Simple Assembler and then modified,
examined, and played with.

Frequently, the examples are designed to do something to the
screen. The reason for this is that you can tell at once if things are
working as planned. If you are trying to send the message ““TEST
STRING’” and it comes out "’test string’’ or ““TEST STRIN"” or ““TEST
STRING@'* — you can go back and reassemble it with the SA until
you get it right. More importantly, you'll discover what you did
wrong.

What you see on the screen when you POKE a particular
number to the screen will differ from computer to computer. In fact, it
can vary on different models of the same computer. For this reason,

How To Use This Book |

the examples in the book are usually given in standard ASCII codes
(explained later).

Chances are that your computer uses a particular code for the
alphabet which is not ASCII. The Commodores use what’s called
""PET ASCII’’ and the Atari uses ATASCII, for ATart ASCII. It’s not
that bad, however, since once you've found the correct number to
show theletter ““A’’ on screen, the letter "’B’’ will be the next higher
number. If you don’t have a chart of the character codes for your
computer’s screen POKEs, just use this BASIC program and jot down
the number which is used to POKE the uppercase and lowercase
7 IA- rr

10 FOR I=0TO 255: POKE (your computer’s start-of-screen-
RAM address), I: NEXT

With that knowledge, you can easily achieve the exact, predicted
results for the examples in the book by substituting your computer’s
code.

A Sample Example

The following illustrations will show you how to go about entering
and testing the practice examples in the book. At this point, of course,
you won't recognize the ML instructions involved. The following
samples are only intended to serve as a guide to working with the
examples you will come upon later in the text.

After you've typed in and saved the SA, youcanRUN it (it's a
BASIC program which helps you to write ML). The first thing it does
is ask you where you want to start your ML program — where you
want it stored in memory. This is why you need to know of a safe
place to put ML programs in your computer.

Of course you use line numbers when creating a BASIC
program. Line numbers are not used in ML programming. Instead,
you can think of memory addresses as ‘‘line numbers.”” So, if you are
using the Atari, you will tell the SA that you are going to start your
ML program at 0600. It will then print 0600 on the screen as if it were a
line number, and you enter a ML program instruction, one per line,
like this:

0600 PLA (This PLA is always required in the Atari when
you use USR.)

0601 LDY #00 (Stay in the hexadecimal mode for this
example.)

0603 LDA #21

0605 STA (58)Y

0608 RTS

0609 END

I How To Use This Book

The SA will automatically print each ‘‘line number’’ address
when you are programming. You just type in those now mysterious
ML instructions. This program will put the letter ““A’* on screen.
After you are finished with an example, you type the word "“END"’
and the SA will tell you the starting address of your ML program in
RAM memory.

The next step is to try out the ML program you’ve written to see
that it will work as planned. On the Atari, you could type:

X=USR(1536) (and hit RETURN)

and this will “RUN"" your ML program. You will have sent control of
the computer from BASIC to your new ML program via the USR
command. Be sure to remember that the Atari requires the PLA as the
tirst instruction of each ML program that you plan to go to from
BASIC by using the USR command. In all the examples in this book, type
in a PLA as the first instruction before continuing with the rest of the
example 1f you use an Atari.

Most personal computers use Microsoft BASIC, and the PLA is
not necessary. Here’s how the same example would look on a
PET/CBM after you answered 0360 as the starting address when the
SA asked for it:

0360 LDY #01

0362 LDA #41

0364 STA 8000

0367 RTS

0368 END (The word “’END’’ isn’t a 6502 ML instruction; it’s
a special signal to the SA to stop constructing a
program and exit the SA program. Such special
words are called pseudo-ops.)

Then you could test it in direct mode (just typing in the
instruction onto the screen with no line number and not as part of a
BASIC program) by typing:

SYS 864 and youshould see the ““A’" on the screen.

Notice that the Atari and PET versions are similar, but not
identical. All 6502 based computers will work with the same
““instruction set’” of commands which the 6502 chip can understand.
The major differences occur when you need to specify something
which is particular to the design of your computer brand. An example
would be the location in memory of your computer’s screen. The
instructions at 0605 in the Atari example and 0364 in the PET example
send the code for the letter A’ to the different screen locations for
these two computer brands. Also, the letter ** A’ itself is signified by
the number 41 on a PET and by the number 21 on an Atari.

But we’ll go into these things further on. The main thing to learn
here is how to use the SA to practice the examples. If you type in 0600

4

How To Use This Book |

as the starting address as 1n the Atari example above, the SA will
print the number 0600 on screen and wait for you to type in a 6502
instruction (PLA in this case) and hit RETURN. Then it will print the
next memory address just as if you were using an automatic line
numbering routine when programming in BASIC. After you hit
RETURN, the SA will print 0601 and wait for you to type in LDY #00.

2
The Fundamentals

The difficulty of learning ML has sometimes been exaggerated. There
are some new rules to learn and some new habits to acquire. But most
ML programmers would probably agree that ML is not inherently
more difficult to understand than BASIC. More of a challenge to
debug in many cases, but it’s not worlds beyond BASIC in
complexity. In fact, many of the first home computerists in the 1970's
learned ML before they learned BASIC. This is because an average
version of the BASIC language used in microcomputers takes up
around 12,000 bytes of memory, and early personal computers (KIM,
AIM, etc.) were severely restricted by containing only a small amount
of available memory. These early machines were unable to offer
BASIC, so everyone programmed in ML.

Interestingly, some of these pioneers reportedly found BASIC to
be just as difficult to grasp as ML. In both cases, the problem seems to
be that the rules of a new language simply are ‘“obscure’” until you
know them. In general, though, learning either language probably
requires roughly the same amount of effort.

The first thing to learn about ML is that it reflects the
construction of computers. It most often uses a number system
(hexadecimal) which is not based on ten. You will find a table in
Appendix E which makes it easy to look up hex, decimal, or binary
numbers.

We count by tens because it is a familiar (though arbitrary)
grouping for us. Humans have ten fingers. If we had eleven fingers,
the odds are that we would be counting by elevens.

What'’s a Natural Number?
Computers count in groups of twos. It is a fact of electronics that the
easiest way to store and manipulate information is by ON-OFF states.
A light buib is either on or off. This is a two-group, it’s binary, and so
the powers of two become the natural groupings for electronic
counters. 2, 4, 8, 16, 32, 64, 128, 256. Finger counters (us) have been
using tens so long that we have come to think of ten as natural, like
thunder in April. Tensisn’t natural at all. What’s more, twos is a
more efficient way to count.

To see how the powers of two relate to computers, we canruna
short BASIC program which will give us some of these powers.
Powers of a number are the number multiplied by itself. Two to the

2 The Fundamentals

power of two (22) means 2 times 2 (4). Two to the power of three (2%)
means 2 times 2 times 2 (8).

10FORI=0to 16
20PRINT 2/ 1
30 NEXT 1

ML programming can be done in decimal (based on ten-
groupings), but usually is not. Most ML programming involves hex
numbers. This means groups of 16 rather than 10.

Why not just program in the familiar decimal numbers (as
BASIC does)? Because 16 is one of the powers of two. Itis a
convenient grouping (or base) for ML because it organizes numbers
the way the computer does. For example, all computers work, at the
most elementary level, with bits. A bit is the smallest piece of
information possible: something is either on or off, yes or no, plus or
minus, true or false. This two-state condition (binary) can be
remembered by a computer’s smallest single memory cell. This single
cell is called a bit. The computer can turn each bit ‘‘on’’ or “’off”’ as if
it were a light bulb or a flag raised or lowered.

It’s interesting that the word bit is frequently explained as a
shortening of the phrase Blnary digiT. In fact, the word bit goes back
several centuries. There was a coin which was soft enough to be cut
with a knife into eight pieces. Hence, pieces of eight. A single piece of
this coin was called a bit and, as with computer memories, it meant
that you couldn’t slice it any further. We still use the word bit today as
in the phrase two bits, meaning 25 cents.

Whatever it’s called, the bit is a small, essential aspect of
computing. Imagine that we wanted to remember the result of a
subtraction. When two numbers are subtracted, they are actually
being compared with each other. The result of the subtraction tells us
which number is the larger or if they are equal. ML has an instruction,
like a command in BASIC, which compares two numbers by
subtraction. It is called CMP (for compare). This instruction sets
“’flags’’ in the CPU (Central Processing Unit), and one of the flags
always remembers whether or not the result of the most recent action
taken by the computer was a zero. We'll go into this again later. What
we need to realize now is that each flag — like the flag on a mailbox —
has two possible conditions: up or down. In other words, this
information (zero result or not-zero) is binary and can be stored within
a single bit. Each of the flags is a bit. Together they make up one byte.
That byte is called the Status Register.

Byte Assignments

Our computers group these bits into units of eight, called bytes. This
relationship between bits and bytes is easy to remember if you think
of a bit as one of the ““pieces of eight.”” Eight is a power of two also

The Fundamentals 2

(two, to the third power). Eight is a convenient number of bits to
work with as a group because we can count from zero to 255 using
only eight bits.

This gives us enough room to assign all 26 letters of the alphabet
(and the uppercase letters and punctuation marks, etc.) so that each
printed character will have its particular number. The letter “*A"”
(uppercase) has been assigned the number 65. “’B*’ is 66, and so on.
Throughout this book, examples will follow the ASCII code for letters
of the alphabet. Most microcomputers, however, do not adhere
strictly to the ASCII code. If you get unexpected results when trying
the example programs, check your BASIC manual to see if POKEing
to the screen RAM uses a different code than ASCIL. If that is the
case, substitute your screen POKE code for the values given in the
examples.

These ‘‘assignments’’ form the convention called the ASCII
code by which computers worldwide can communicate with each
other. Text can be sent via modems and telephone lines and arrive
meaning the same thing to a different computer. It's important to
visualize each byte, then, as being eight bits ganged together and able
to represent 256 different things. As you might have guessed, 256 is a
power of two also (two, to the power of eight).

So, these groupings of eight, these bytes, are a key aspect of
computing. But we also want to simplify our counting from 0 to 255.
We want the numbers to line up in a column on the screen or on
paper. Obviously, the decimal number five takes up one space and the
number 230 takes up three spaces.

Also, hex is easier to think about in terms of binary numbers —
the on-off, single-bit way that the computer handles numbers:

Decimal Hex Binary

1 01 00000001
2 02 00000010
3 03 00000011 (1 and 2)
4 04 00000100
5 05 00000101 (4 and 1)
6 06 00000110 (4 and 2)
7 07 00000111 4+2+1)
8 08 00001000
9 09 00001001

10 (note new digits) >0A 00001010

11 0B 00001011

12 oC 00001100

13 0D 00001101

14 0E 00001110

15 OF 00001111

16 (note new column > 10 00010000

17 in the hex) 11 00010001

2 The Fundamentals

See how hex $10 (hex numbers are usually preceded by a dollar
sign to show that they are not decimal) looks like binary? If you split a
hex number into two parts, 1 and 0, and the binary (it's an eight-bit
group, a byte) into two parts, 0001 and 0000 — you can see the
relationship.

The Rationale For Hex Numbers

ML programmers often handle numbers as hexadecimal digits,
meaning groups of sixteen instead of ten. It is usually just called hex.
You should read over the instructions to the Simple Assembler and
remember that you can choose between working in hex or decimal
with that assembler. You can know right from the start if you‘re
working with hex or decimal, so the dollar sign isn’t used with the
Simple Assembler.

DECIMAL 0123456789 thenyoustartover
with 10

HEX 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D OE
OF then you start over with 10

Program 2-1. Microsoft Hex-Decimal Converter.

HES$="0123456 789ABCDEF"

PRINT" {CLEAR} {03 DOWN}PLEASE CHOOSE:

PRINT" {03 DOWN}{@3 RIGHT}1-INPUT HEX &

GET DECIMAL BACK.
REM NEW LINE HERE
PRINT" {62 DOWN]} 2-INPUT DECIMAL TO G
ET HEX BACK.

7 GETK:IFK=@THEN7

9 PRINT" {CLEAR}":0N KGOTO0208,400

100 H$="":FORM=3TO@STEP-1:N%=DE/(16"M) : DE=
DE-N%*16 "M:HS=HS$S+MIDS (HES, N%+1,1)
: NEXT

181 RETURN

102 D=@:0=3:FORM=1T04:FORW=@TO1l5:IFMIDS (HS
,M,1)=MIDS$(HES,W+1,1)THEN104

193 NEXTW

164 D1=W*(16"(Q)):D=D+D1:Q=Q-1:NEXTM

185 DE=INT(D):RETURN

200 INPUT"{@2 DOWN}HEX";HS$:GOSUB1@2:PRINTS
pc(11)"{ur}= {REV}"DE"{LEFT} "

210 GOTO0200

40@ INPUT"{@2 DOWN}DECIMAL";DE:GOSUBl@#:PR

o n -

10

The Fundamentals 2

INTSPc(14)"{ur}= {REV]} "HS" "
410 GOT0O400

Program 2-2. Atari Hex-Decimal Converter.

190 DIM HS$(23),N$(9):0PEN#1,4,0,"K:"

130 GRAPHICS @

149 PRINT" PLEASE CHOOSE:"

150 PRINT"1- INPUT HEX AND GET DECIMAL BAC
Ko 1]

168 PRINT"2-~ INPUT DECIMAL AND GET HEX BAC
Ko L]

178 PRINT:PRINT"==>"; :GET#1,K

180 IFK<490R>5Q0THEN170

19@ PRINTCHRS (K) :ONK~48 GOTO 300,400

300 HS="@ABCDEFGHI! Il I1JKLMNO"

310 PRINT"HEX"; :INPUT N$:N=0

320 FORI=1TOLEN(NS)

330 N=N*16+ASC(HS (ASC(NS$(I))~47))-64:NEXTI

340 PRINT"S$";NS$;"=";N:PRINT:PRINT:GOTO140
403 HS="@123456789ABCDEF"

410 PRINT"DECIMAL"; : INPUTN:M=4096

420 PRINTN;"=$";

430 FORI=1TO4:J=INT(N/M)

44@ PRINTHS (J+1,J+1); :N=N-M*J:M=M/16

450 NEXTI:PRINT:PRINT:GOTO140

The first thing to notice is that instead of the familiar decimal
symbol 10, hex uses the letter ““A’’ because this is where decimal
numbers run out of symbols and start over again with aone and a
zero. Zero always reappears at the start of each new grouping in any
number system: 0, 10, 20, etc. The same thing happens with the
groupings in hex: 0, 10, 20, 30, etc. The difference is that, in hex, the 1
in the “‘tens’’ column equals a decimal 16. The second column is now a
"’sixteens’’ column. 11 means 17, and 21 means 33 (2 times 16 plus
one). Learning hex is probably the single biggest hurdle to get over
when getting to know ML. Don’t be discouraged if it’s not
immediately clear what's going on. (It probably never will be totally
clear — it is, after all, unnatural.) You might want to practice the

11

2 The Fundamentals

exercises at the end of this chapter. As you work with ML, hex will
gradually seem less and less alien.

To figure out a hex number, multiply the second column by 16
and add the other number to it. So, 1A would be one times 16 plus 10
(recall that A stands for ten).

Hex does seem impossibly confusing when you come upon it for
the first time. It will never become second nature, but it should be at
least generally understood. What is more, you can program in ML
quite easily by looking up the hex numbers in the table at the end of
this book. You need not memorize them beyond learning to count
from 1to 16 — learning the symbols. Be able to count from 00 up to
OF. (By convention, even the smallest hex number is listed as two
digits as in 03 or 0B. The other distinguishing characteristic is that
dollar sign that is usually placed in front of them: $05 or $0E.) It is
enough to know what they look like and be able to find them when
you need them.

The First 255

Also, most ML programming involves working with hex numbers
only between 0 and 255. This is because a single byte (eight bits) can
hold no number larger than 255. Manipulating numbers larger than
255 is of no real importance in ML programming until you are ready
to work with more advanced ML programs. This comes later in the
book. For example, all 6502 ML instructions are coded into one byte,
all the "“flags’’ are held in one byte, and many ‘“addressing modes’’
use one byte to hold their argument.

To learn all we need know about hex for now, we can try some
problems and look at some ML code to see how hex is used in the
majority of ML work. But first, let’s take an imaginary flight over
computer memory. Let’s get a visual sense of what bits and bytes and
the inner workings of the computer’s RAM look like.

The City Of Bytes

Imagine a city with a single long row of houses. It’s night. Each house
has a peculiar Christmas display: on the roof is a line of eight lights.
The houses represent bytes; each light is a single bit. (See Figure 2-1.)
If we fly over the city of bytes, at first we see only darkness. Each byte
contains nothing (zero), so all eight of its bulbs are off. (On the
horizon we can see a glow, however, because the computer has
memory up there, called ROM memory, which is very active and
contains built-in programs.) But we are down in RAM, our free user-
memory, and there are no programs now in RAM, so every house is
dark. Let’s observe what happens to an individual byte when
different numbers are stored there; we can randomly choose byte
1504. We hover over that house to see what information is
““contained’’ in the light display. (See Figure 2-2.)

12

The Fundamentals 2

Figure 2-1. Night In The City Of Bytes.

2 The Fundamentals

Figure 2-2.

Like all the rest, this byte is dark. Each bulb is off. Observing this, we
know that the byte here is “’holding’’ or representing a zero. If
someone at the computer types in POKE 1504, 1 — suddenly the
rightmost light bulb goes on and the byte holds a one instead of a
zero:

Figure 2-3.

This rightmost bulb is in the 1’s column (just as it would be in our
usual way of counting by tens, our familiar decimal system). But the
next bulb is in a 2’s column, so POKE 1504, 2 would be:

Figure 2-4.
vl

- .

-~
-

And three would be one and two:

Figure 2-5.

Z) = - -

e S Ay L P i B W~ f

In this way — by checking which bits are turned on and then adding
them together — the computer can look at a byte and know what
number is there. Each light bulb, each bit, is in its own special

14

The Fundamentalis 2

position in the row of eight and has a value twice the value of the one
just before it:

Figure 2-6.

\\\ /,/\\ | /,,\\II/,‘\! l/,\\l /s, & t &M 2, MY,

Eight bits together make a byte. A byte can ““hold’” a number
from 0 through 255 decimal. We can think of bytes, though, in any
number system we wish — in hex, decimal, or binary. The computer
uses binary, so it’s useful to be able to visualize it. Hex has its uses in
ML programming. And decimal is familiar. But a number is still a
number, no matter what we call it. After all, five trees are going to be
five trees whether you symbolize them by 5, $05, or 00000101.

A Binary Quiz
BASIC doesn’t understand numbers expressed in hex or binary. The
Simple Assembler contains two subroutines to translate a number
from decimal to hex or vice versa. You might want to take a look at
how it’s done as a way of getting a better feel for these different
numbers systems. The subroutines are located at lines 4000 and 5000.
Binary, for humans, is very visual. It forms patterns out of zeros and
ones. The following program will let you quiz yourself on these
patterns.

Here is a game, for all computers, which will show you a byte as
it looks in binary. You then try to give the number in decimal:

Program 2-3. Binary Quiz for All Computers.

198 REM BINARY QUIZ

119 C1=28:C8=111: REM FOR ATARI ONLY

120 C1=88:C8=79: REM FOR APPLE ONLY

130 C1=209:C0=215:REM FOR COMMODORE ONLY

149 X=INT(256*RND(1)): D = X: P = 128

158 PRINT CHR$(125);: REM ATARI ONLY

168 PRINT CHR$(147);: REM COMMODORE ONLY

176 HOME: REM APPLE ONLY

180 FOR I =1 TO 8

190 IF INT(D/P) = 1 THEN PRINT CHRS$(Cl);:
D = D-P: GOTO 2180

15

2 The Fundamentals

208 PRINT CHRS (C9);

210 P = P/2: NEXT I: PRINT

220 PRINT " WHAT IS THIS IN DECIMAL?"

230 INPUT Q: IF Q = X THEN PRINT
"CORRECT": GOTO 250

240 PRINT "SORRY, IT WAS";X

259 FOR T = 1 TO 1000: NEXT T

260 GOTO 149

This program will print out the entire table of binary numbers
from 0 to 255:

Program 2-4.

100 REM COMPLETE BINARY TABLE

110 L=8:B=2:C=1

12¢ FORX=0TO255:PRINTX;

140 IFXAND1THENK (C)=49:GOTOl68

150 K(C)=48

160 C=C+1l:IFBANDXTHENK (C)=49:G0OTO180
176 K(C)=48

180 B=B*2:IFC>8THEN200

190 GOTOlé64

200 FORI=@FTO7 :PRINTSTRS (K(L)-48);:L=L-1
210 NEXT

220 C=0:PRINT

260 L=8:B=2:C=1:NEXTX

Examples And Practice

Here are several ordinary decimal numbers. Try to work out the hex
equivalent:
10
15
5
16
17
32
128
129

-

1]

®NNT AN

16

The Fundamentals 2

9. 255
10. 254

We are not making an issue of learning hex or binary. If you
needed to look up the answers in the table at the end of the book,
fine. As you work with ML, you will familiarize yourself with some of
the common hex numbers. You can write most ML programs without
needing to worry about binary. For now, we only want to be able to
recognize what hex is. There are even some pocket "“programmer’’
calculators which change decimal to hex for you and vice versa.
Another way to go about “‘hexing’’ is to use a BASIC program which
does the translation. A problem with BASIC is that you will be
working in ML and your computer will be tied up. It is often
inconvenient to crank up a BASIC program each time you need to
work out a hex number. However, the Simple Assembler will do the
translations for you any time you need them.

One other reason that we are not stressing hex too much is that
ML is generally not programmed without the help of an assembler.
The Simple Assembler provided in this book will handle most of your
input automatically. It allows you to choose whether you prefer to
program in hex or decimal. You make this decision by changing line
10 before starting to assemble. After that, you can put in hex or
decimal without worrying that there will be any confusion about your
intentions.

This little BASIC program is good for practicing hex, but also
shows how to change a small part and make it work for two-byte hex
numbers. It will take decimal in and give back the correct hex. It is
designed for Microsoft BASIC computers, so it will not work on the
Atari.

10 H$="'0123456789ABCDEF"’

20 PRINT ““ENTER DECIMAL NUMBER"’;:INPUT X

30 IF X > 255 GOTO 20: REM NO NUMBERS BIGGER

THAN 255 ALLOWED

40 FORI=1TOO0STEP-1

50 N%=X/(16M1): X=X-N% * 1641

60 HE$=HES$+ MID$(H$,N% +1,1)

70 NEXT

80 PRINT HE$

90 GOTO20

For larger hex numbers (up to two, to the power of 16 — which is

65536), we can just change the above program. Eliminate line 30 and
change line 40 to: FORI=3 TO 0 STEP -1. This will give us four-place
hex numbers (used only as addresses) but which will also become
recognizable after some ML practice.

17

2 The Fundamentals

65535 is an interesting number because it represents the limit of
our computers’ memories. In special cases, with additional hardware,
memory can be expanded beyond this. But this is the normal upper
limit because the 6502 chip is designed to be able to address (put bytes
in or take them out of memory cells) up to $FFFF.

Ganging Two Bytes Together To Form An Address

The 6502 often sets up an address by attaching two bytes together and
looking at them as if they formed a unit. An address is most
commonly a two-byte number. $FFFF (65535) is the largest number
that two bytes can represent, and $FF (255) is the most that one byte
can hold. Three-byte addressing is not possible for the 6502 chip.
‘“Machine language’’ means programming which is understood
directly by the 6502 chip itself. There are other CPU (Central
Processing Unit) chips, but the 6502 is the CPU for VIC, Apple, 64,
PET/CBM, and Atari. It's the one covered in this book.

Reading A Machine Language Program

Before getting into an in-depth look at ‘‘monitors,’’ those bridges
between you and your machine’s language — we should first learn
how to read ML program listings. You've probably seen them often
enough in magazines. Usually, these commented, labeled, but very
strange-looking programs are called source code. They can be
examined and translated by an assembler program into an ML program.
When you have an assembler program run through source code, it
looks at the key words and numbers and then POKEs a series of
numbers into the computer. This series is then called the object code.

Source programs contain a great deal of information which is of
interest to the programmer. The computer only needs a list of
numbers which it can execute in order. But for most people, lists of
numbers are only slightly more understandable than Morse code. The
solution is to replace numbers with words. The primary job of an
assembler is to recognize an ML instruction. These instructions are
called mnemonics, which means *’memory aids.’’ They are like BASIC
words, except that they are always three letters long.

If you type the mnemonic JMP, the assembler POKEs a 76 into
RAM memory. It’s easier to remember JMP than 76. The 76 is the
number that clues the computer that it’s supposed to perform a JMP.
The 76 is called an opcode, for "“operation code.”” The three-letter
words we use in ML programming, the mnemonics, were designed to
sound like what they do. JMP does a JUMP (like a GOTO in BASIC).
Some deluxe assemblers also let you use labels instead of numbers —
as long as you define your labels at the start of the source code. These
labels can refer to individual memory locations, special values like the
score in a game, or entire subroutines.

18

The Fundamentals 2

Four Ways To List A Program

Labeled, commented source code listings are the most elaborate kind
of ML program representation. There are also three other kinds of ML
listings. We can use a simple addition example program to show how
it looks when represented in each of the four ML program listing
styles. The first two styles are simply ways for you to type a program
into the computer. The last two styles show you what to type in, but
also illustrate what is going on in the ML program. First let’s look at
the most elementary kind of ML found in books and magazines: the
BASIC loader.

N

Program 2-6. BASIC Loader.

10 FOR ADDRESS = 4096 TO 4103

20 READ BYTE

30 POKE ADDRESS, BYTE

40 NEXT ADDRESS

50 DATA 169,2,105,5,141,160,15,96

This is a series of decimal numbers in DATA statements which is
POKEd into memory starting at decimal address 4096. When these
numbers arrive in RAM, they form a little routine which puts the
number 2 into the accumulator — a special location in the computer
that we’ll get to later — and then adds 5. The result of the addition is
then moved from the accumulator to decimal address 4000. If you try
this program out, you can SYS 4096 to execute ML program and then
? PEEK (4000) and you'll see the answer: seven. BASIC Ioaders are
convenient because the user doesn’t need to know how to enter ML
programs. The loader POKEs them in and all the user has to do is SYS
or USR or CALL to the right address and the ML transfers control
back to BASIC when its job is done.

Getting even closer to the machine level is the second way you
might see ML printed in books or magazines: the hex dump. On
some computers (PET, Apple) there is a special "“monitor’’ program
in ROM which lets you list memory addresses and their contents as
hex numbers. More than that, you can usually type over the existing
values on the screen and change them. That’s what a hex dump
listing is for. You copy it into your computer’s RAM by using your
computer’s monitor. How you enter the monitor mode differs on
each computer and we’ll get to monitors in the next chapter.

The hex dump, like the BASIC loader, tells you nothing about
the functions or strategies employed within an ML program. Here’s
the hex dump version of the same 2 +5 addition program:

19

2 The Fundamentals

Program 2-7.

1000 A9 02 69 05 8D AO0 OF 60

The third type of listing is called a Ji~issembly. It’s the opposite of
an assembly because another program called a disassembler takes
machine language (the series of numbers, the opcodes in the
computer’s memory) and translates it into the words, the
mnemonics, which ML programmers use. The instruction you use
when you want to load the accumulator is called LDA, and you can
store what’s in the accumulator by using an STA. We'll get to them
later. In this version of our example addition routine, it’s a bit clearer
what’s going on and how the program works. Notice that on the left
we have the hex numbers and, on the right, the translation into ML
instructions. ADC means ADd with Carry and RTS means ReTurn
from Subroutine.

Program 2-8.

1000 A9 02 LDA #$02
1002 69 05 ADC #505
1004 8D A0 OF STA SOFAQ
1007 60 RTS

The Deluxe Version

Finally we come to that full, luxurious, commented, labeled, deluxe
source code we spoke of earlier. It includes the hex dump and the
disassembly, but it also has labels and comments and line numbers
added, to further clarify the purposes of things. Note that the
numbers are all in hex. On the far left are the memory addresses
where this routine is located. Next to them are the hex numbers of the
instructions. (So far, it resembles the traditional hex dump.) Then
come line numbers which can be used the way BASIC line numbers
are: deleted, inserted, and so on. Next are the disassembled
translations of the hex, but you can replace numbers with

labels (see Program 2-10). You could still use numbers, but if you‘ve
defined the labels early on, they can serve as a useful reminder of
what the numbers represent. Last, following the semicolons, are the
comments. They are the same as REM statements. (See Programs 2-9
and 2-10.)

f
U miteyy O ddvenyg

R B

2 Due w‘w,v\o-n-s

Y N AG G \?\—tci ("xy,,mw,co hey metruetong
4 Cdn\mtwf;

20

The Fundamentals 2

0¥d0= dDOVIO0LS

ATAWHSSY 40 dNd
NInLHA

000% TYWIDAA LV HIOLS
S aavy

¢ HLIM ¥V dVvO1

e Sn fum en e

*3aay IOV¥0LS ANIIAQ!

‘G ¥ SVY ,¥3qav, dANIJAq!?
*Z SY ,OMlL, T39v¥T IANIJAQ?
(960%) 000T1$ ¥yAAv I¥vis !

ATdWISSY 40 dNd
NINLAyd

000% TIVWIDIA IV dYOLS
S 4adav

¢ HLIM ¥ dvo0"1

(960%) 0001$ ¥AAY I¥VLS

sjudWwW o))

||l apo)) axnog I||||I|

0vTO
0ETO
0210
0TTO
00TO
0¥00
0€00
0200
0100
S000

2000= OML

S000= ¥IAQY
14714 TFEVT ---
09 -L00T

40 0¥ d8 -%00T
S0 69 -Z00T

Z0 6Y -000T

‘Ajquiassy pajjeqe “gl-g wesdoid

000T= LYVLS
N3 *
SiLd
HOVYO0LS VYIS
JyIaav# oav
OML# Va1 LAY LS
‘
ovdos IqA* ADVI0LS
¢ da- ydaav
¢ 4a- oML
000T$ vd-°
! NE
! S1LY
! 0vd0$ VYIS
‘ S0s# Dav
! 20s# va1
! 000TS vd-*
A1quassesi(]

0v1o
0€10
0210
0110

0070

S000

1PqUINN
aury

09 -L00T

d0 0¥ d8 -¥%00T
S0 69 -C001

70 6¥ -0001
3po) $SIPPV

Palqo Krowa |

‘unsi Alquiassy |ing v "6-7 we4Soad

21

2 The Fundamentals

Program 2-1 |. The Source Code By Itself.

.BA $1000 ; START ADDR $1000 (4096)
TWO .DE 2 ;DEFINE LABLE "TWO" AS 2.
ADDER .DE 5 ;DEFINE "ADDER" AS A 5.
STORAGE .DE S$OFAQ ;DEFINE STORAGE ADDR.
4
START LDA #TWO ; LOAD A WITH 2

ADC #ADDER ;7 ADD 5

STA STORAGE ; STORE AT DECIMAL 4000

RTS ; RETURN

.EN ; END OF ASSEMBLY

Program 2-11 illustrates just the source code part. The object code has
not yet been generated from this source code. The code has not been
assembled yet. You can save or load source code via an assembler in the
same way that you can save or load programs via BASIC. When 2-11
is in the computer, you could type “ ASSEMBLE"’ and the assembler
would translate the instructions, print them on the screen, and POKE
them into memory.

The Simple Assembler operates differently. It translates, prints,
and POKEs after you hit RETURN on each line of code. You can save
and load the object, but not the source code.

Before we get into the heart of ML programming, a study of the
instruction mnemonics and the various ways of moving information
around (called addressing), we should look at a major ML
programming aid: the monitor. It deserves its own chapter.

ANSWERS to quiz: 0A, OF, 05, 10, 11, 20, 80, 81, FF, FE

2

3
The Monitor

A monitor is a program which allows you to work directly with your
computer’s memory cells. When the computer ’’falls below”” BASIC
into the monitor mode, BASIC is no longer active. If you type RUN, it
will not execute anything. BASIC commands are not recognized. The
computer waits, as usual, for you to type in some instructions. There
are only a few instructions to give to a monitor. When you’re working
with it, you're pretty close to talking directly to the machine in
machine language.

The PET and Apple II have monitors in ROM. This means that
you do not need to load the monitor program into the computer; it’s
always available to you. (PETs with Original ROM sets do not have a
ROM monitor; you must load in the monitor from a tape or disk.)
Atari and VIC computers have a monitor as part of a larger
‘*Assembler Editor’” plug-in cartridge. The monitor on the Atar
cartridge is called the ""Debugger.”’ That’s a good name for it:
debugging is the main purpose of a monitor. You use it to check your
ML code, to find errors.

The various computers have different sets of instructions which
their monitors recognize. However, the main functions are similar, so
it is worth reading through all of the following descriptions, even if
the discussion is not specifically about the monitor for your
computer. On the PET/CBM, VIC, and 64 you can add many of these
functions with a monitor ““extension”” program called Micromon or
Supermon (about which more later). These monitors are included in
Appendix F. The monitors on the Apple Il and available in the Atari
Assembler Editor Cartridge do not need ““extending.’’ They contain
most of the significant features required of a monitor. However, the
special extensions in Appendix F for the Commodore computers add
considerably to the Commodore ML programmer’s repertoire.

The Apple il

You enter the Apple monitor by typing CALL -151. You will see the
“7**" monitor prompt and the cursor immediately after it. Here are the
monitor instructions:

1. Typing an address (in hex) will show you the number
contained in that memory cell. *2000 (hit RETURN) will show 2000 —
FF (if, in fact, 255 decimal ($FF, hex) is in that location).

2. You can examine a larger amount of memory in hex (this is

23

3 The Monitor

called a memory dump or a hex dump). The Apple monitor remembers
the address of the last number displayed. This can be used as a
starting address for the dump. If you type the instruction in number
one above, and then type *.2010, you will see a dump of memory
between 2001 and 2010. The only difference between this and
instruction one is the period (.) before the requested address.

3. You can directly cause a dump by putting the period between
two addresses: *2000.2010 combines the actions of instructions one
and two above.

4. Hitting RETURN will continue a dump, one line at a time.

5. Thelast displayed memory location can be changed by using
the colon (:). This is the equivalent of BASIC’s POKE. If *2000 results
in FF on the screen, you can change this FF to zero by typing *:00. To
see the change, type *2000 again. Or you could type *2000:00 and
make the change directly.

The Apple II reference manual contains excellent descriptions of
the monitor instructions. We will list the rest of them only briefly
here:

6. Change a series of locations at once: *2000: 00 69 15 65 12.

7. Move (transfer) a section of memory: *4000 < 2000.2010M will
copy what’s between 2000 and 2010 up to address 4000. (All these
addresses are hex.)

8. Compare two sections of memory: *4000 < 2000.2010V. This
looks like Move, but its job is to see if there are any differences
between the numbers in the memory cells from 2000-2010 and those
from 4000-4010. If differences are found, the address where the
difference occurs appears on screen. If the two memory ranges are
identical, nothing is printed on the screen.

9. Saving (writing) a section of ML to tape: *2000.2010W. This is
how you would save an ML program. You specify the addresses of
the start and end of your program.

10. Loading (reading) a section of memory (or an ML program)
back into the computer from tape: *2000.2010R will put the bytes
saved, in instruction nine, above, back where they were when you
saved them.

An interesting additional feature is that you could send the bytes
to any address in the computer. To put them at 4000, you would just
type *4000.4010R. This gives you another way to relocate subroutines
or entire ML programs (1n addition to the Move instruction, number
seven above). If you move an ML program to reside at a different
address from the one it was originally intended during assembly, any
JMP or JSR (Jump To Subroutine, like BASIC’s GOSUB) instructions
which point to within your program must be adjusted to point to the
new addresses. If your subroutine contained an instruction such as
2000 JSR 2005, and you loaded at 4000, it would still say 4000 JSR
2005. You would have to change it to read 4000 JSR 4005. All the BNE,

24

The Monitor 3

BPL, BEQ, branching instructions, though, will make the move
without damage. They are relative addresses (as opposed to the
absolute addressing of JSR 2005). They will not need any adjusting.
We’ll go into this in detail later.

11. Run (go): *2000G will start executing the ML program which
begins at address 2000. There had better be a program there or the
machine is likely to lock up, performing some nonsense, an endless
loop, until you turn off the power or press a RESET key. The program
or subroutine will finish and return control of the computer to the
monitor when it encounters an RTS. This is like BASIC’s SYS
command, except the computer returns to the monitor mode.

12. Disassemble (list): *2000L will list 20 lines of ML on the
screen. It will contain three fields (a field is a "’zone’” of information).
The first field will contain the address of an instruction (in hex). The
address field is somewhat comparable to BASIC's line numbers. It
defines the order in which instructions will normally be carried out.

Here's a brief review of disassembly listings. The second field
shows the hex numbers for the instruction, and the third field is
where a disassembly differs from a ““memory’’ or ""hex’’ dump (see
numbers one and two, above). This third field translates the hex
numbers of the second field back into a mnemonic and its argument.
Here’s an example of a disassembly:

2000 A9 41 LDA #$41
2002 8D 23 32 STA $3223
2005 A4 99 LDY $99

Recall that a dollar sign ($) shows that a number is in
hexadecimal. The pound sign (#) means "’immediate’’ addressing
(put the number itself into the A register at 2000 above). Confusing
these two symbols is a major source of errors for beginning ML
programmers. You should pay careful attention to the distinction
between LDA #$41 and LDA $41. The second instruction (without the
pound sign) means to load A with whatever number is found in
address $41 hex. LDA #$41 means put the actual number 41 itself into the
accumulator. If you are debugging a routine, check to see that you've
got these two types of numbers straight, that you've loaded from
addresses where you meant to (and, vice versa, you've loaded
immediately where you intended).

13. Mini-assembler. This is an assembler program, though it is
not part of the monitor ROM. It is in the Integer BASIC ROM, so
systems using firmware Applesoft II cannot use it although the Apple
Il Plus can, in the INT mode. Like the Simple Assembler, this mini-
assembler cannot use labels or calculate forward branches. (The
Simple Assembler can be used for forward branches, however, as
we'll see later.) You enter the Apple mini-assembler by typing the

3 The Monitor

address, mnemonic, and argument of your first instruction. The ! is
printed by the computer:

12000:LDA #15

This will be disassembled, and then you type in the next line,
using spaces between each field:

! LDY #01

14. Step and Trace. These are very useful ways to isolate and fix
errors. Remember that ML does not have much in the way of error
messages. In fact, unless you are using a very complex assembler
program, the only error that an assembler can usually detect is an
impossible mnemonic. If you mistyped LDA as LDDA, your
assembler would print ??? or, in the Apple, sound abeep and put a
circumflex (A) near the error. In any case, you are not going to get
elaborate SYNTAX ERROR messages. The Simple Assembler will
type the word ERROR on the screen. Try it.

We’ll examine step and trace debugging methods under
numbers 10 and 11 of the discussion of the Atari cartridge below. The
Atari Assembler Cartridge and the Commodore Monitor Extension
programs both allow step and trace, too.

15. Changing registers. *(CONTROL) E will display the
contents of the Accumulator, the X and Y registers, the status register
(P) and the stack pointer (S). You can then change the contents of
these registers by typing them in on screen, following a colon. Note
that to change the Y register, you must type in the A and X registers
as well:

* (CONTROL) E

You’'ll see: A=01 X=05 Y=FF P=30 S=FE (whatever’s in the
registers at the time).

To change the Y register to 00, you type in the A, X, and then the
new version of Y:

*:01 05 00 (and hit RETURN)

16. Going back to BASIC. You can use * (CONTROL) B to go to
BASIC (but it will wipe out any BASIC program that might have been
there). Or you canuse * (CONTROL) C to go back to BASIC,
non-destructively.

The Atari Monitor

To enter the monitor on the Atari, you put the assembler cartridge
into the left slot. The Atari does not have a monitor in ROM; you
need the cartridge. As mentioned at the start of this chapter, the
monitor mode in Atari is called DEBUG and is a part of the larger
program within the assembler cartridge. There are three parts (or

26

The Monitor 3

modes) within the cartridge: EDIT, ASM (assembler), and DEBUG.
Before looking at the commands available in the DEBUG mode, let’s
briefly explore how an ML program is created using the EDIT mode
followed by ASM. The cartridge provides the Atari with a more
advanced assembler than the Simple Assembler or the mini-
assemblers available within the Apple Il monitor or the Commodore
monitor extension programs. The cartridge allows labels, comments,
and line numbers.

Until now, we’ve discussed ML programming which uses three
fields (zones). Here’s an example program which shows these three
simple fields. We will print ten "’ A’s”’ on the screen (the numbers are
decimal):

Address Field Instruction Field Argument (Operand) Field

2000 LDY #10

2002 LDA #33

2004 STA (88),Y
(The screen location is
remembered by the Atari

in addresses 88 and 89.)

2007 DEY

2008 BNE 2004

2010 RTS (or BRK)

When you are in Atari’s EDIT mode, you construct a program
somewhat differently than you do with the Simple Assembler (or
with mini-assemblers). Here’s the same program using the Atari’s
additional fields:

Line# Label Instruction Argument Comments

100 START LDY #10 Set up counter for loop
110 LDA #33 “A’ in ATASCII

120 LOOP STA (88),Y

130 DEY

140 BNE LOOP Loop until zero

Notice that labels allow us to use the word LOOP instead of the
specific address we want to loop back to. In addition to all this, there
are pseudo-ops which are instructions to the assembler to perform
some task. A pseudo-op does not become part of the ML program
(it’s not a 6502 instruction), but it affects the assembly process in

27

3 The Monitor

some way. We would need two pseudo-ops in the above program to
allow it to be assembled properly. Add these lines:

10 *=%$0600 (tells the assembler that this program should be
assembled starting at address $0600. The $ means hexadecimal.)
160 .END (tells the assembler that it should stop assembling
here.)

The example above with line numbers and labels is called source
code because it is the source from which the assembler gets its
information when it assembles object code (object code is an actual ML
program which could be run, or executed). You cannot run the
program above as is. It must first be assembled into 6502 ML. For one
thing, the label LOOP has to be replaced with the correct branch back
to line 120. Source code does not put bytes into memory as you write
it (as a more elementary assembler like the Simple Assembler does).

More Than A Monitor

To make this into object code which you can actually execute, you
type ASM (for assemble), and the computer will put the program
together and POKE the bytes into memory, showing you on screen
what it looks like.

To test the program, type BUG to enter the DEBUG mode, clear
the screen, and RUN it by typing G600 (for GO $0600). You'll see
AAAAAAAAAA on screen. It works!

All this isn't, strictly speaking, a monttor. It's a full assembler.
The part of the assembler cartridge program which is equivalent to
the monitor programs on Apple II and PET is the DEBUG mode.
There are a number of commands in DEBUG with which you can
examine, test, and correct ML code. As on the other computers, the
DEBUG (monitor) mode allows you to work closely with single bytes
at a time, to see the registers, to trace program flow. All numbers you
see on screen (Or use to enter into the computer) are in hex. You enter
the DEBUG mode by typing BUG when the Assembler Cartridge is in
the Atari. (To go back to EDIT mode, type X.) Here are the commands
of DEBUG:

1. Display the registers: type DR (RETURN) and you will see
whatever is in the various registers.

A=01 X=05 Y=0F P=30 S=FE (P is the status registerand S
is the stack pointer.)

2. Change the registers: type CR< 6,2 (RETURN) and you will
have put a six into the accumulator and a two into the X register. To
put a five into the status register, you must show how far to go by
using commas: CR<,,,5 would do it. CR <5 would put five into the
accumulator.

3. Dump memory: type D2000 and you will see the eight hex
numbers which start at address 2000 in memory.

28

The Monitor 3

D2000

2000 FF 02 60 20 FF D2 00 00

D2000,2020 (would dump out memnory between these two
addresses)

4. Change memory: type C2000< 00,00 to put zeros into the first
two bytes following address 2000.

5. Transfer (move) memory: type M1000 <2000,2010 and you
will non-destructively copy what’s between 2000-2010 down into
1000-1010.

6. Compare (verify) memory: type V1000 <2000,2010 and any
mismatches will be printed out.

7. Disassemble (list): type L2000 and you will see 20 lines of
instructions displayed, the mnemonics and their arguments.

8. Mini-assemble: the DEBUG mode allows you to enter
mnemonics and arguments one at a time, but you cannot use labels.
(The pseudo-ops BYTE, DBYTE, and WORD are available, though.)
This is similar to the Simple Assembler and the mini-assemblers
available to Apple Il and PET monitor users.

You type 2000 < LDA $05 and the computer will show you the
bytes as they assemble into this address. Subsequent instructions can
be entered by simply using the less-than sign again: < INC $05. To
return to the DEBUG mode, you can hit the RETURN key on a blank
line.

9. Go(RUN a program): type G2000 and whatever program
starts at address 2000 will run. Usually, you can stop the RUN by
hitting the BREAK key. There are cases, though, (endless loops)
which will require that you turn off the computer to regain control.

10. Trace: type T2000 and you will also RUN your program, but
the registers, bytes of ML code, and the disassembled mnemonics
and arguments are shown as each instruction is executed. This is
especially useful since you can watch the changes taking place in the
registers and discover errors. If you have an LDA $03 and you then
expect to find the accumulator to have the number three in it — you'll
notice that you made that very common mistake we talked about
earlier. Following LDA $03, you will see that the accumulator has,
perhaps, a tenin it instead of the three you thought you’d get. Why?
Because you wanted to write LDA #03 (immediate). Instead, you
mistakenly loaded A with the value in address three, whatever it is.

Seeing unexpected things like this happen during trace allows
you to isolate and fix your errors. Trace will stop when it landson a
BRK instruction or when you press the BREAK key.

11. Step: type 52000 and you will ““step’’ through your program
at 2000, one instruction at a time. It will look like trace, but you move
slowly and you control the rate. To see the following instruction, you
type the S key again. Typing S over and over will bring you through

29

3 The Monitor

the program.

12, Return to EDIT mode: type X.

/ eBim

PET, VIE;-And-Commedeore-64-Monitors
The resident monitor on the PET/CBM computer is the simplest of
monitors. You enter it from BASIC by typing SYS 4 when no program
is RUNning. This lands on a BReaK instruction; address 4 always
contains a zero which is the opcode for BRK. You are then in monitor
mode. Original ROM PETs, the earliest models, do not have a
monitor in ROM, but one is available on tape, called TIM. Everything
is done with hexadecimal numbers.

There are only six monitor commands:

1. Go (RUN): type G 2000 and the program starts at address
2000. It will continue until it lands on a BRK instruction. There is no
key you can type to stop it.

2. LOAD (from tape or disk) : type L “0:NAME"’,08 and a
program called "‘name’’ on disk drive zero will be loaded at the
address from which it was SAVEd. There is no provision to allow you
to LOAD to a different address. L "NAME"’,01 will LOAD from tape.

3. SAVE (to a tape or disk): type S ““0:NAME"’,08,2000,2009 and
the bytes between hex 2000 and 2008 will be saved to disk drive zero
and called "“name.”” Important note: you should always be aware that a
SAVE will not save the highest byte listed in your SAVE instruction. You
always specify one byte more than you want to save. In our example
here, we typed 2009 as our top address, but the monitor SAVEd only
up to 2008. S “NAME"’,01,2000,2009 will SAVE to tape.

Aninteresting trick is to save the picture on your screen. Try this
from the monitor (for a disk drive) : S ""0:SCREEN’’,08,8000,8400
(with a tape drive: S “SCREEN’*,01,8000,8400). Then, clear the
screen and type: L “0:SCREEN"’,08 (tape: L *’SCREEN"’,01). This
illustrates that an ML SAVE or LOAD just takes bytes from within
whatever range of memory you specify; it doesn’t care what those
bytes contain or if they make ML sense as a program.

4. See memory (memory dump): type M 2000 2009 and the
bytes between these addresses will be displayed on screen. To change
them, you use the PET cursor controls to move to one of these hex
numbers and type over it. Hitting the RETURN key makes the change
in the computer’s memory (the same way you would change aline in
BASIC).

Machine Language Registers

5. See theregisters: type R and you will see something like this
on screen (the particular numbers in each category will depend on
what’s going on in your computer whenever you type R):

PC IRQ SR AC XR YR SpP
2000 E62E 30 00 05 FF FE

The Monitor 3

The PC is the program counter: above, it means that the next
instruction the computer would perform is found at address 2000. If
you typed G (for RUN), this is where it would start executing. The
IRQ is the interrupt request. The SR is the status register (the
condition of the flags). The AC is the accumulator, the XR and YR are
the X and Y registers. The SP is the stack pointer. We’ll get into all
this later.

6. Exit to BASIC: type X.

That’s it. Obviously, you will want to add trace, step, transfer,
disassemble, and other useful monitor aids. Fortunately, they are
available. Two programs, Supermon and Micromon, can be LOADed
into your Commodore computer and will automatically attach
themselves to your ‘‘resident’” monitor. That is, when you’re in the
monitor mode, you can type additional monitor commands.

Both Micromon and Supermon are widely available through user
groups (they are in the public domain, available to everyone for free).
If there is no user group nearby, you can type them in yourself.
Supermon appeared in COMPUTE! Magazine, December 1981, Issue
#19, on page 134. Micromon appeared in COMPUTE!, January 1982,
Issue #20, page 160. A Micromon for VIC can be found in COMPUTE!,
November 1982. Because of their value, particularly when you are
debugging or analyzing ML programs, you will want to add them to
your program library. Several of these monitor extensions can be
found in Appendix F.

Using The Monitors

You will make mistakes. Monitors are for checking and fixing ML
programs. ML is an exacting programming process, and causing bugs
is as unavoidable as mistyping when writing a letter. It will happen,
be sure, and the only thing for it is to go back and try to locate and fix
the slip-up. It is said that every Persian rug is made with a deliberate
mistake somewhere in its pattern. The purpose of this is to show that
only Allah is perfect. This isn’t our motivation when causing bugs in
an ML program, but we'll cause them nonetheless. The best you can
dois try to get rid of them when they appear.

Probably the most effective tactic, especially when you are just
starting out with ML, is to write very short sub-programs
(subroutines). Because they are short, you can more easily check each
one to make sure that it is functioning the way it should. Let’s assume
that you want to write an ML subroutine to ask a question on the
screen. (This is often called a prompt since it prompts the user to do
something.)

The message can be: "’press any key.”” First, we'll have to store
the message in a data table. We’ll put it at hex $1500. That's as good a
place as anywhere else. Remember that your computer may be using
a different screen RAM POKE code to display these letters. POKE the

31

3 The Monitor

letter ““A’’ into your screen RAM to see what number represents the
start of your screen alphabet and use those numbers for any direct-to-
screen messages in this book.

L ASCII ATARI Cily

Qe &> 1500 80 P 48 le <o
1501 82 R 50 12 g
1502 69 E 37 s G
1503 83 S 51 19 ’gg
1504 83 S 51 1q
1505 32 0 32 3%
1506 65 A 33 ! s
1507 78 N 46 & KA
1508 89 Y 57 ¥ 56
1509 32 0 2 3
150A 75 K 43 nooag
1508 69 E 37 50 LA
150C 89 Y 57 LS 72
150D 00 255 (the delifniter,”

the signal that the message is
finished. Atari must use
something beside zero which is
used to represent the space
character.)

We'll put the subroutine at $1000, but be warned! This
subroutine will not work as printed. There are two errors in this
program. See if you can spot them:

1000 LDY #$00

1002 LDA $1500,Y

1005 CMP $60Q # oo (is it the delimiter?)

1007 BNE $100A (if not, continue on)

1009 RTS (it was zero, so quit and return to whatever
pHo® JSRed, or called, this subroutine)

100A STA $8000,Y (for PET)

100D INY 40

100E JMP $1080 (always JMP back to $1000)

Make the following substitutions if you use one of these machines:

Atari: 1005 CMP $FF (That’s hex for 255.)
Atari: 100A STA ($88),Y
Apple: 100A STA $0400,Y

Since we haven't yet gone into addressing or instructions much,
this is like learning to swim by the throw-them-in-the-water method.
See if you can make out some of the meanings of these instructions
anyway.

32

The Monitor 3

This subroutine will not work. There are two errors and they are
two of the most common bugs in ML programming. Unfortunately,
they are not obvious bugs. An obvious bug would be mistyping: LDS
when you mean LDA. That sort of bug would be caught by your
assembler, and it would print an error message to let you know that
no such instruction as LDS exists in 6502 ML.

The bugs in this routine are mistakes in logic. If you disassemble
this, it will also look fine to the disassembler, and no error messages
will be printed there either. But, it will not work the way you wanted
it to. Before reading on, see if you can spot the two errors. Also see if
you can figure out how this routine would execute its instructions.
Where does the computer go after the first pass through this code?
When and how does it finish the job?

Two Common Errors

A very common bug, perhaps the most common ML bug, is caused
by accidentally using zero page addressing when you mean to use
immediate addressing. We mentioned this before, but it is the cause of
so much puzzlement to the beginning ML programmer that we’ll go
over it several times in this book. Zero page addressing looks very
similar to immediate addressing. Zero page means that you are
addressing one of the cells in the first 256 addresses. A page of
memory is 256 bytes. The lowest page is called zero page and is the
RAM cells from number zero through 255. Page one is from 256-511
(this is the location of the "’stack’’ which we’ll get to later). Addresses
512-767 are page three and so on up to the top memory, page 255.

Immediate addressing means that the number is right within the
ML code, that it’s the number which follows (which is the operand or
the argument of) an instruction. LDA #13 is immediate. It puts the
number 13 into the accumulator. LDA $13 is zero page and puts
whatever number 15 i address 13 into the accumulator. It's easy and
very common to mix up these two, so you might look at these
instructions first when debugging a faulty program. See that all your
zero page addressing is supposed to be zero page and that all your
immediate addressing is supposed to be immediate.

In the prompt example above, the LDY #00 1s correct — we do
want to set the Y register counter to zero to begin printing the
message. So we want an immediate, the actual number zero. Take a
good look, however, at the instruction at location $1005. Here we are
not asking the computer to compare the number in the accumulator
to zero. Instead, we are asking the computer to compare it to
whatever might be 1n address zero — with unpredictable results. To fix
this bug, the instruction should be changed to the immediate
addressing mode with CMP # 0.

The second bug is also a very common one. The subroutine, as
written, can never leave itself. It is an endless loop. Loop structures

33

3 The Monitor

are usually preceded by a short initialization phase. The counters
have to be set up before the loop can begin. Just as in BASIC, where
FOR 1 =1TO 10 tells the loop to cycle ten times, in ML, we set the Y
register to zero to let it act as our counter. It kills two birds with one
stone in this subroutine. It is the offset (a pointer to the current
position in a list or series) to load from the message in the data table
and the offset to print to the screen. Without Y going up one (INY)
each time through the loop, we would always print the first letter of
the message, and always in the first position on the screen.

What's the problem? It’s that JMP instruction at $100E. It sends
us back to the LDY # 0 address at 1000. We should be looping back to
address 1002. As things stand, the Y register will always be reset to
zero, and there will never be any chance to pick up the delimiter and
exit the subroutine. An endless cycle of loading the ‘‘P’* and printing
it will occur. Y will never get beyond zero because each loop jumps
back to 1000 and puts a zero back into Y. To see this, here’s the same
bug in BASIC:

10 T=5

20 T=T+1

30 IF T=10 THEN 50
40 GOTO 10

Tracking Them Down

The monitor will let you discover these and other errors. You can
replace an instruction with zero (BRK) and see what happens when
you execute the program up to the BRK. Better yet, you can single
step through the program and see that, for example, you are not
really computing CMP #00 where you thought you were. It would
also be easy to see that the Y register is being reset to zero each time
through the loop. You are expecting to use it as a counter and it’s not
cooperating, it’s not counting up each time through the loop. These
and other errors are, if not obvious, at least discoverable from the
monitor,

Also, the disassembler function of the monitor will permit you to
study the program and look, deliberately, for correct use of #00 and
$00. Since that mix-up between immediate and zero page addressing
is so common an error, always check for it first.

Programming Tools
The single most significant quality of monitors which contributes to
easing the ML programmer’s job is that monitors, like BASIC, are
interactive. This means that you can make changes and test them right
away, right then. In BASIC, you can find an error in line 120, make
the correction, and RUN a test immediately.

It’s not always that easy to locate and fix bugs in ML: there are
few, if any, error messages, so finding the location of a bug can be

34

The Monitor 3

difficult. But a monitor does allow interactivity: you make changes
and test them on the spot. This is one of the drawbacks of complex
assemblers, especially those which have several steps between the
writing of the source code and the final assembly of executable object
code (ML which can be executed).

These assemblers often require several steps between writing an
ML program and being able to test it. There are linkers, relocatable
loaders, double-pass assembly, etc. All of these functions make it
easier to rearrange ML subroutines, put them anywhere in memory
without modification, etc. They make ML more modular (composed
of small, self-sufficient modules or subroutines), but they also make it
less interactive. You cannot easily make a change and see the effects
at once.

However, using a mini-assembler or the Simple Assembler, you
are right near the monitor level and fixes can easily and quickly be
tested. In other words, the simpler assemblers sometimes gain in
efficiency what they lose in flexibility. The simpler assemblers
support a style of programming which involves less pre-planning,
less forethought, less abstract analysis. If something goes awry, you
can just try something else until it all works.

Plan Ahead Or Plunge In?

Some find such trial and error programming uncomfortable, even
disgraceful. The more complicated assemblers discourage
interactivity and expect careful preliminary planning, flowcharts,
even writing out the program ahead of time on paper and debugging
it there. In one sense, these large assemblers are a holdover from the
early years of computing when computer time was extremely
expensive. There was a clear advantage to coming to the terminal as
prepared as possible. Interactivity was costly. But, like the
increasingly outdated advice urging programmers to worry about
saving computer memory space, it seéms that strategies designed to
conserve computer time are anachronistic. You can spend all the time
you want on your personal computer.

Complex assemblers tend to downgrade the importance of a
monitor, to reduce its function in the assembly process. Some
programmers who've worked on IBM computers for 20 years do not
use the word monitor in the sense we are using it. To them, monitors
are CRT screens. The deluxe assembler on the SuperPet, for example,
does have a monitor, but it has no single-step function and has no
provision for SAVEing an ML program to disk or tape from the
monitor.

Whether or not you are satisfied with the interactive style of
simple, mini-assemblers and their greater reliance on the monitor
mode and on trial and error programming is your decision. If you
want to graduate to the more complicated assemblers, to move closer

35

3 The Monitor

to high-level languages with labels and relocatable code, fine. The
Atari assembler is fairly high-level already, but it does contain a full-
featured monitor, the ’debugger,”” as well. The choice is ultimately a
matter of personal style.

Some programmers are uncomfortable unless they have a fairly
complete plan before they even get to the computer keyboard. Others
are quickly bored by elaborate flowcharting, ‘‘dry computing’‘ on
paper, and can’t wait to get on the computer and see-what-happens-
if. Perhaps a good analogy can be found in the various ways that
people make telephone calls. When long-distance calls were
extremely expensive, many people made lists of what they wanted to
say and carefully planned the call before dialing. They would also
watch the clock during the call. (Some still do this today.) As the costs
of phoning came down, most people found that spontaneous
conversation was more satisfying. It’s up to you.

Computer time, though, is now extremely cheap. If your
computer uses 100 watts and your electric company charges five cents
per KWH, leaving the computer on continuously costs about 12 cents
aday.

4
Addressing

The 6502 processor is an electronic brain. It performs a variety of
manipulations with numbers to allow us to write words, draw
pictures, control outside machines such as tape recorders, calculate,
and do many other things. Its manipulations were designed to be
logical and fast. The computer has been designed to permit
everything to be accomplished accurately and efficiently.

If you could peer down into the CPU (Central Processing Unit),
the heart of the computer, you would see numbers being delivered
and received from memory locations all over the computer.
Sometimes the numbers arrive and are sent out, unchanged, to some
other address. Other times they are compared, added, or otherwise
modified, before being sent back to RAM or to a peripheral.

Writing an ML program can be compared to planning the
activities of this message center. It can be illustrated by thinking of
computer memory as a city of bytes and the CPU as the main post
office. (See Figure 4-1.) The CPU does its job using several tools: three
registers, a program counter, a stack pointer, and seven little one-bit
flags contained in a byte called the Status Register. We will only
concern ourselves with the "’C’’ (carry) flag and the "’Z"’ (it equals
zero) flags. The rest of them are far less frequently needed for ML
programming so we’ll only describe them briefly. (See Figure 4-1.)

Most monitors, after you BRK (like BASIC’s STOP) out of a
program, will display the present status of these tools. It looks
something like this:

Program 4-1. Current Status Of The Registers.

PC IRQ SR AC XR YR SP
0005 E455 30 00 5E 04 F8

The PC is the Program Counter and it is two bytes long so it can
refer to a location anywhere in memory. The IRQ is also two bytes
and points to a ROM ML routine which handles interrupts, special-
priority actions. A beginning ML programmer will not be working
with interrupts and need not worry about the IRQ. You can also more
or less let the computer handle the SP on the end. It’s the stack

37

"A‘00£€ VLS FSTIT :UOHINLSUL UY UQ JHOM IV SIARNIIX [3S0d |+ 4nBi4

4 Addressing

90 dogg,

401434

e aa e
e

Addressing 4

pointer. The SP keeps track of numbers, usually return-from-
subroutine addresses which are kept together in a list called the stack.

The computer will automatically handle the stack pointer for us.
It will also deal with IRQ and the program counter. For example, each
ML instruction we give it could be one, two, or three bytes long. TYA
has no argument and is the instruction to transfer a number from the
Y register to the accumulator. Since it has no argument, the PC can
locate the next instruction to be carried out by raising itself by one. If
the PC held $4000, it would hold $4001 after execution of a TYA. LDA
#8301 is a two-byte instruction. It takes up two bytes in memory so the
next instruction to be executed after LDA #$01 will be two bytes
beyond it. In this case, the PC will raise itself from $4000 to $4002. But
we can just let it work merrily away without worrying about it.

The Accumulator: The Busiest Register

The SR, AC, XR, and YR, however, are our business. They are all
eight bits (one byte) in size. They are not located in memory proper.
You can’t PEEK them since they have no address like the rest of
memory. They are zones of the CPU. The AC, or A register, but most
often called the accumulator, is the busiest place in the computer. The
great bulk of the mail comes to rest here, if only briefly, before being
sent to another destination.

Any logical transformations (EOR,AND) or arithmetic
operations leave their results in the accumulator. Most of the bytes
streaming through the computer come through the accumulator. You
can compare one byte against another using the accumulator. And
nearly everything that happens which involves the accumulator will
have an effect on the status register (SR, the flags).

The X and Y registers are similar to each other in that one of their
main purposes is to assist the accumulator. They are used as
addressing indexes. There are addressing modes that we’ll gettoina
minute which add an index value to another number. For example,
LDA $4000, X will load into A the number found in address $4005, if
the X register is currently holding a five. The address is the number
plus the index value. If X has a six, then we load from $4006. Why not
just LDA $4006? It is far easier to raise or lower an index inside a loop
structure than it would be to write in each specific address literally.

A second major use of X and Y is in counting and looping. We’'ll
go into this more in the chapter on the instruction set.

We'll also have some things to learn later about the SR, the
Status Register which holds some flags showing current conditions.
The SR can tell a program or the CPU if there has been a zero, a carry,
or a negative number as the result of some operation, among other
things. Knowing about carry and zero flags is especially significant in
ML.

For now, the task at hand is to explore the various “‘classes’” of
mail delivery, the 6502 addressing modes.

39

4 Addressing

Aside from comparing things and so forth, the computer must
have a logical way to pick up and send information. Rather like a
postal service in a dream — everything should be picked up and
delivered rapidly, and nothing should be lost, damaged, or delivered
to the wrong address.

The 6502 accomplishes its important function of getting and
sending bytes (GET and PRINT would be examples of this same thing
in BASIC) by using several ‘“addressing modes.”” There are 13
different ways that a byte might be ““mailed’’ either to or from the
central processor.

When programming, in addition to picking an instruction (of the
56 available to you) to accomplish the job you are working on, you
must also make one other decision. You must decide how you want to
address the instruction — how, in other words, you want the mail sent
or delivered. There is some room for maneuvering. You will probably
not care if you accidentally choose a slower delivery method than you
could have. Nevertheless, 1t is necessary to know what choices you
have: most addressing modes are designed to aid a common
programming activity.

Absolute And Zero

Let’s picture a postman’s dream city, a city so well planned from a
postal-delivery point of view that no byte is ever lost, damaged, or
sent to the wrong address. It’s the City of Bytes we first toured in
Chapter 2. It has 656536 houses all lined up on one side of a street (a
long street). Each house is clearly labeled with its number, starting
with house zero and ending with house number 65535. When you
want to get a byte from, or send a byte to, a house (each house holds
one byte) — you must “"address’’ the package. (See Figure 4-2.)

Here’s an example of one mode of addressing. It’s quite popular
and could be thought of as ““First Class.”” Called absolute addressing,
it can send a number to, or receive one from, any house in the city.
It’s what we normally think of first when the idea of ‘“addressing”’’
something comes up. You just put the number on the package and
send it off. No indexing or special instructions. If 1t says 2500, then it
means house 2500.

1000 STA $2500
or
1000 LDA $2500

These two, STore A and LoaD A, STA and LDA, are the
instructions which get a byte from, or send it to, the accumulator. The
address, though, is found in the numbers following the instruction.
The items following an instruction are called the instruction’s
argument. You could have written the address several ways. Writing it
as $2500 tells your assembler to get it from, or send it directly to, hex
$2500. Thas kind ot addressing uses just a simple $ and a four-digit

40

Addressing 4

s A A

4 Addressing

number. You can send the byte sitting in the accumulator to
anywhere in RAM memory by this method. Remember that the byte
value, although sent to memory, also remains in the accumulator. It's
more a copying than aliteral sending.

To save time, if you are sending a byte down to address 0
through 255 (called the "’zero page’’), you can leave off the first two
numbers: 1000 STA $07. This is only for the first 256 addresses, but
they get more than their share of mail. Your machine’s BASIC and
operating system (OS) use much of zero page for their own
temporary flags and other things. Zero page is abusy place, and there
is not much room down there for you to store your own ML pointers
or flags (not to mention whole routines).

Heavy Traffic In Zero Page

This second way to address, using only two hex digits, any hex
number between $00 and $FF or a decimal number between 0 and
255, is called, naturally enough, zero page addressing. It’s pretty fast
mail service: the deliverer has to decide among only 256 instead of
65536 houses, and the computer is specially wired to service these
special addresses. Think of them as being close to the post office.
Things get in and out fast at zero page. This is why your BASIC and
operating system tend to use it so often.

These two addressing modes — absolute and zero page — are
very common ones. In your programming, you will probably not use
zero page as much as you might like. You will notice, on a map of
your computer’s flags and temporary storage areas, that zero page is
heavily trafficked. You might cause a problem storing things in zero
page in places used by the OS (operating system) or BASIC. Several
maps of both zero page and BASIC in ROM can be found in
Appendix B.

You can find safe areas to store your own programs’ pointers
and flags in zero page. A buffer (temporary holding area) for the
cassette drive or for BASIC’s floating point numbers might be used
only during cassette loads and saves or during BASIC RUNs to
calculate numbers. So, if your flags and pointers were stored in these
addresses, things would be fine unless you involved cassette
operations. In any case, zero page is a popular, busy neighborhood.
Don’t put any ML programs in there. Your main use of zero page is
for the very efficient ““indirect Y’ addressing we’ll get to in a minute.
But you've always got to check your computer’s memory map for
zero page to make sure that you aren’t using bytes which the
computer itself uses.

By the way, don’t locate your ML programs in page one (256-511
decimal) either. That's for the ‘’stack,’’ about which more later. We’ll
identify where you can safely store your ML programs in the various
computers. It’s always OK to use RAM as long as you keep BASIC

42 '

Addressing 4

programs from putting their variables on top of ML, and keep ML
from writing over your BASIC assembler program (such as the
Simple Assembler).

Immediate

Another very common addressing mode is called immediate
addressing — it deals directly with a number. Instead of sending out
for a number, we can just shove it immediately into the accumulator
by putting it right in the place where other addressing modes have an
address. Let’s illustrate this:

1000 LDA $2500 {Absolute mode)
1000 LDA #$09 (Immediate mode)

The first example will load the accumulator with whatever
number it finds at address $2500. In the second example, we simply
wanted to put a9 into the accumulator. We know that we want the
number 9. So, instead of sending off for the 9, we just type a9 in
where we would normally type a memory address. And we tack on a
symbol to show that the 9 is the number we’re after. Without the #,
the computer will load the accumulator with whatever it finds at
address number 9 (LDA $09). That would be zero page addressing,
instead of immediate addressing.

In any case, immediate addressing is very frequently used, since
you often know already what number you are after and do not need
to send for it at all. So, you just put it right in with a #. This is similar
to BASIC where you define a variable (10 VARIABLE =9). In this
case, we have a variable being given a known value. LDA #9 is the
same idea. In other words, immediate addressing is used when you
know what number you want to deal with; you're not sending off for
it. It’s put right into the ML code as a number, not as an address.

To illustrate immediate and absolute addressing modes working
together, let’s imagine that we want to copy a 15 into address $4000.
(See Program 4-2.)

Implied
Here’s an easy one. You don’t use any address or argument with this
one.
This is among the more obvious modes. It’s called implied,
since the mnemonic itself implies what is being sent where: TXA
means transfer X register’s contents to the Accumulator. Implied
addressing means that you do not put an address after the instruction
(mnemonic) the way you would with most other forms of addressing.
It’s like a self-addressed, stamped envelope. TYA and others are
simular short-haul moves from one register to another. Included in
this implied group are the SEC, CLC, SED, CLD instructions as well.
They merely clear or set the flags in the status register, letting you

43

4 Addressing

NF *
*GIg# NILLIYM d9 ATNOM ST XHH TVHILIT
¥ °XdH SI 000% FHL ‘1I¥YWIDEA SI ST
dHL *IVYWIDAQ ANV XdH NIIMLIE HOLIMS
NVYD NOA SYITIWASSY AWOS NI LVYHLI JLON

000% ssd¥adv NI LI JI0oLS ¢ 000%$ VLS

ST ATIVYILIT HLIIM ¥ dvod ¢ S1# val
*{.SSTHAAY ONINNIDIL, = ,¥da) 000Z$ SI WYYD0dd IW

SIHL J40 SSTVAAY SONILIVLIS ¢ 0002Z$ vg"*

LT T L ST

[T TN

0110
0010
0600
0800
0400
0900
0500
0v00
0€00
0Z00
0100

0% 00 as -zoo0Z
d0 6V -000¢

*000% SS34PPY INj0SqY 03U §| 3FeIpaww) uy SunIng 7+ weiSoiyg

Addressing 4

and the computer keep track of whether an action resulted in a zero,
if a “carry’’ has occurred during addition or subtraction, etc.

Also ““implied’” are such instructions as RTS (ReTurn from
Subroutine), BRK (BReaK), PLP, PHP, PLA, PHA (which “‘push”’ or
“pull’”’ the processor status register or accumulator onto or off the
stack). Such actions, and increasing by one (incrementing) the X or Y
register's number (INX, INY) or decreasing it (DEX, DEY), are also
called “implied.”” What all of these implied addresses have in
common is the fact that you do not need to actually give any address.
By comparison, an LDA $2500 mode (the absolute mode) must have
that $2500 address to know where to pick up the package. TXA
already says, in the instruction itself, that the address 1s the X register
and that the destination will be the accumulator. Likewise, you do
not put an address after RTS since the computer always memorizes
its jump-off address when it does a JSR (Jump to SubRoutine). NOP
(No OPeration) is, of course, implied mode too.

Relative

One particular addressing mode, the relative mode, used to be a real
headache for programmers. Not so long ago, in the days when ML
programming was done “‘by hand,’’ this was a frequent source of
errors. Hand computing — entering each byte by flipping eight
switches up or down and then pressing an ENTER key — meant that
the programmer had to write his program out on paper, translate the
mnemonics into their number equivalents, and then “’key’” the whole
thing into the machine. It was a big advance when computers would
accept hexadecimal numbers which permitted entering OF instead of
eight switches: 00001111. This reduced errors and fatigue.

An even greater advance was when the machines began having
enough free memory to allow an assembler program to be in the
computer while the ML program was being written. An assembler
not only takes care of translating LDA $2500 into its three (eight-
switch binary) numbers: 10101101 00000000 00100101, but it also
does relative addressing. So, for the same reason that you can
program in ML without knowing how to deal with binary numbers —
you can also forget about relative addressing. The assembler will do it
for you.

Relative addressing is used with eight instructions only: BVS,
BVC, BCS, BCC, BEQ, BMI, BNE, BPL. They are all “’branching’
instructions. Branch on: overflow flag set (or cleared), carry flag set
(or cleared), equal, minus, not-equal, or plus. Branch if Not-Equal,
like the rest of this group, will jump up to 128 addresses forward or
backward from where it is or 127 addresses backward (if the result of
the most recent activity is ‘’not equal’’). Note that these jumps can be
a distance of only 128, or 127 back, and they can go in either direction.

45

4 Addressing

You specify where the jump should go by giving an address within
these boundaries. Here’s an example:

1000 LDX #$00
1002 INX
1003 BNE 1002
1005 BRK

(The X register will count up by ones until it hits 255 decimal and
then it resets itself to zero.)

This is what you type in to create a ML FOR-NEXT loop. You are
branching, relative to address 1003, which means that the assembler
will calculate what address to place into the computer that will get
you to 1002, You might wonder what’s wrong with the computer just
accepting the number 1002 as the address to which you want to
branch. Absolute addressing does give the computer the actual
address, but the branching instructions all need addresses which are
“offsets’’ of the starting address. The assembler puts the following
into the computer:

1000 A2 00
1002 ES8
1003 DO FD
1005 00

The odd thing about this piece of code is that “'FD’’ at 1004. How
does FD tell the computer to Branch back to 1002? (Remember that X
will increment up to 255, then reset to zero on the final increment.)
$FD means 253 decimal. Now it begins to be clear why relative
addressing is so messy. If you are curious, numbers larger than 127,
when found as arguments of relative addressing instructions, tell the
computer to go back down to lower addresses. What’s worse, the
larger the number, the less far down it goes. It counts the address 1005
as zero and counts backwards thus:

1005=0

1004 =255
1003 =254
1002=253

Not a very pretty counting method! Luckily, all that we
fortunate assembler users need do is to give the address (as if it were
an absolute address), and the assembler will do the hard part. This
strange counting method is the way that the computer can handle
negative numbers. The reason it can only count to 128 is that the
leftmost bit is no longer used as a 128th’s column. Instead, this bit is
on or off to signify a positive or negative number.

Addressing 4

When you are using one of the branch instructions, you
sometimes branch forward. Let’s say that you want to have a
different kind of FOR-NEXT loop:

1000 LDX #0
1002 INX

1003 BEQ 100A
1005 JMP 1002
1008 BRK

1009 BRK
100A BRK

When jumping forward, you often do not yet know the precise
address you want to branch to. In the example above, we really
wanted to go to 1008 when the loop was finished (when X was equal
to zero), but we just entered an approximate address (100A) and
made a note of the place where this guess appeared (1004). Then,
using the POKE function on the assembler, we can POKE the correct
offset when we know what it should be. Forward counting is easy.
When we finally saw that we wanted to go to 1008, we would POKE
1004, 3. (The assembler would have written a five because that’s the
correct offset to branch to 100A, our original guess.)

Remember that the zero address for these relative branches is
the address immediately following the branch instructions. For
example, a jump to 1008 is three because you count: 1005 a zero,
1006 =1, 1007=2, 1008=3. All this confusion disappears after writing
afew programs and practicing with estimated branch addresses.
Luckily, the assembler does all the backwards branches. That’s lucky
because they are much harder to calculate.

Unknown Forward Branches

Also, the Simple Assembler will do one forward (‘‘not-yet-known’’)
branch calculation for you. If you look at the BASIC program listing of
the Simple Assembler, you will see that the pseudo-ops (fake
operations) are located from line 241 up. You could add additional
forward-resolving pseudo-ops if you just give them new names like
F1resolved later by R1. Alternatively, you can type a guess in for the
forward branches, as we just did in the example above. Then, when
you find out the exact address, simply exit from the assembler, give
1004 as your starting address for assembly, and write in BEQ 1008 and
let the assembler calculate for you. Either way, you will soon get the
hang of forward branching.

We'll get into pseudo-ops later. Essentially, they are instructions
to the assembler (such as “‘please show me the decimal equivalent of
the following hex number’’), but which are not intended to be
thought of as mnemonics which get translated into ML object code.
Pseudo-ops are “‘false”” operations, not part of the 6502 instruction set.

47

4 Addressing

They are requests to the assembler program to perform some extra
service for the programmer.

Absolute,X And Absolute,Y
Another important addressing mode provides you with an easy way
to manipulate lists or tables. This method looks like absolute
addressing, but it attaches an X ora Y to the address. The X or Y
stands for the X or Y registers, which are being used in this technique
as offsets. That is, if the X register contains the number 3 and you
type: LDA 1000, X, you will LoaD the Accumulator with the value
(the number) which is in memory cell 1003. The register value is added to
the absolute address.

Another method called Zero Page, X works the same way:
LDA 05,X. This means that you can easily transfer or search through
messages, lists, or tables. Error messages can be sent to the screen
using such a method. Assume that the words SYNTAX ERROR are
held in some part of memory because you sometimes need to send
them to the screen from your program. You might have a whole table
of such messages. But we'll say that the words SYNTAX ERROR are
stored at address 3000. Assuming that your screen memory address is
32768 (8000 hex), here’s how you would send the message:

1000 LDX #$00 (set the counter register to zero)
1002 LDA $3000,X (get a letter at 3000+ X)
1005 BEQ $100E (if the character is a zero, we’ve

reached the end of message,
so we end the routine)

1007 STA $86000,X (store a letter on the screen)

100A INX (increment the counter so the next
letter in the message, as well as the
next screen position, are pointed

to)

100B JMP $1002 (jump to the load instruction to
fetch the next character)

100E BRK (task completed, message
transferred)

This sort of indexed looping is an extremely common ML
programming device. It can be used to create delays (FOR T=1TO
5000: NEXT T), to transfer any kind of memory to another place, to
check the conditions of memory (to see, for example, if a particular
word appears somewhere on the screen), and to perform many other
applications. It is a fundamental, all-purpose machine language
technique.

Here's a fast way to fill your screen or any other area of memory.
This example uses the Commodore 64 Screen RAM starting address.
Just substitute your computer’s screen-start address. This is a full

48

Addressing 4

source code for the demonstration screen-fill we tried in Chapter 1.
See if you can follow how this indexed addressing works. What bytes
are filled in, and when? At ML speeds, it isn’t necessary to fill them in
order — nobody would see an irregular filling pattern because it all
happens too fast for the eye to see it, like magic. (See Program 4-3.)
Compare this to Program 1-2 to see the effects of using a

different screen starting address and how source code is an expansion
of a disassembly.

Indirect Y

This one is a real workhorse; you’ll use it often. Several of the
examples in this book refer to it and explain it in context. It isn’t so
much an address in itself as it is a method of creating an address. It
looks like this:

$4000 STA ($80),Y

Seems innocent enough. But watch out for the parentheses.
They mean that $80 is not the real address we are trying to store A
into. Instead, addresses $80 and $81 are holding the address we are
really sending our byte in A to. We are not dealing directly with $0080
here; hence the name for this addressing mode: indirect Y.

If $80,81 have these numbers in them:

$0080 01
$0081 20

and Y is holding a five, then the byte in A will end up in address
$2006! How did we get $2006?

First, we’ve got to mentally switch the numbers in $80,81. The
6502 requires that such ‘“address pointers’’ be held in backwards
order. So visualize $80,81 as forming $2001, a pointer. Then add the
value in Y, which is five, and you get $2006.

This is a valuable tool and you should familiarize yourself with
it. It lets you have easy access to many memory locations very quickly
by just changing the Y register or the pointer. To go up a page, add
one to the number in $0081. To go down four pages, subtract four
from it. Combine this with the indexing that Y is doing for you and
you've got great efficiency. The pointers for this addressing mode
must be stored in zero page locations.

When an address is put into a pointer, you can see that it was
splitin half. The address $2001 was split in the example above It’s a
two-byte number and ML terminology distinguishes between the
bytes by saying that one is the LSB (least significant byte) and the
other is the MSB (most significant byte). The $01 is the least
significant. To grasp what is meant by ““significant,’’ imagine
chopping a decimal number such as 5015 in half. Since the left half,
50, stands for fifty 100’s and the right half stands for 15 ones,

49

4 Addressing

*ONIOD 433y ‘0¥¥Z ION 4l
‘T X9 X ISIVY

L1 TS

‘08497 OL ¥3INNOD 1LAS ¢
w¥u JFLDOVIVHD -

(I¥WIDAEA S, LI IDILON) ¢

d001

X‘00L0¢
X0090¢
X’'0050¢
X'00%0$
¥V *dVHO#

00s#

1%$

0000%

NE*
S1d
aNd
ANT
¥.LS
YIS
¥YiLS
¥Y.LS
¥a“
AQd1

aqa*

¥g*

doon

4

¥ "dV¥HO
4

0%10
0€TO
010
0TTO
00TO
0600
0800
0L00
0900
0500
0%00
0€00
0200
0TO00

LO
90
S0
¥0

Td

00
00
00
00
184
00

09 -€906
0a -1906
80 -09D6
66 -dvD6
66 —-¥¥DO6
66 -L¥06
66 -¥¥O6
6¥ -Z%06
0¥ -0%D6
¢ weaSoag

Addressing 4

obviously the leftmost half, the 100’s, is more significant. Likewise,
the left half of a two-byte hex number like $2001 is the most
significant byte. The $20 stands for 32 times 256 (in decimal terms).
It’s easy to multiply double-byte numbers by decimal 256 by just
adding one to the MSB. This would be a quick way of moving
through the "pages’’ in memory.

The other thing to remember about MSB,LSB is that they are
reversed when broken up and used as an address pointer: LSB,MSB.

Indirect X
Not often used, this mode makes it possible to set up a group of
pointers (a table) in page zero. It’s like Indirect Y except the X register
value is not added to the address pointer to form the ultimate address
desired. Rather, 1t points to which of the pointers to use. Nothing is
added to the address found in the pointer.

It looks like this:

$5000 STA ($90,X)

To see it in action, let’s assume that part of zero page has been
set up to point to various parts of memory. A table of pointers, not
just one:

$0090 $00 Pointer #1

$0091 $04 (it points to $0400)
$0092 $05 Pointer #2

$0093 $70 ($7005)

$0094 S$EA Pointer #3

$0095 $80 (pointing to $80EA)

If X holds a two when we STA $(90,X), then the byte in A will be
sent to $7005. If X holds a four, the byte will go to $80EA.

Allin all, this has relatively little merit. It would be useful in rare
situations, but at least it’s there if you should find you need it.

Accumulator Mode

ASL, LSR, ROL, and ROR shift or manipulate the bits in the byte in
the accumulator. We'll touch on them in the chapter on the
instruction set. They don’t have much to do with addressing, but
they are always listed as a separate addressing mode.

Zero Page,Y
This can only be used with LDX and STX. Otherwise it operates just
like Zero Page, X discussed above.

There you have them, thirteen addressing modes to choose
from. The six you should focus on and practice are: Immediate,
Absolute (plus Absolute,Y and ,X), Zero Page, and Indirect Y. The
rest are either automatic (implied) or not really worth bothering with
until you have full command of the six common and useful ones.

Now that we’ve surveyed the ways you can move numbers
around, it’s time to see how to do arithmetic in ML.

51

5
Arithmetic

There’ll be many things you’ll want to do in ML, but complicated
math is not one of them. Mathematics beyond simple addition and
subtraction (and a very easy form of elementary division and
multiplication) will not be covered in this book. For most games and
other ML for personal computing, you will rarely need to program
with any complex math. In this chapter we will cover what you are
likely to want to know. BASIC is well-suited to mathematical
programming and is far easier to program for such tasks.

Before we look at ML arithmetic, it is worth reviewing an
important concept: how the computer tells the difference between
addresses, numbers as such, and instructions. It is valuable to be able
to visualize what the computer is going to do as it comes upon each
byte in your ML routine.

Even when the computer is working with words, letters of the
alphabet, graphics symbols and the like — it is still working with
numbers. A computer works only with numbers. The ASCII codeis a
convention by which the computer understands that when the
context is alphabetic, the number 65 means the letter A. At first this is
confusing. How does it know when 65 is A and when it is just 65? The
third possibility is that the 65 could represent the 65th cell in the
computer’s memory.

It is important to remember that, like us, the computer means
different things at different times when it uses a symbol (like 65). We
can mean a street address by it, a temperature, the cost of a milk
shake, or even a secret code. We could agree that whenever we used
the symbol /65" we were ready to leave a party. The point is that
symbols aren’t anything in themselves. They stand for other things,
and what they stand for must be agreed upon in advance. There must
be rules. A code is an agreement in advance that one thing
symbolizes another.

The Computer’s Rules

Inside your machine, at the most basic level, there is a stream of
input. The stream flows continually past a "‘gate’” like a river through
a canal. For 99 percent of the time, this input is zeros. (BASICs differ;
some see continuous 255’s, but the idea is the same.) You turn it on
and the computer sits there. What's it doing? It might be updating a
clock, if you have one, and it’s holding things coherent on the TV

53

5 Arithmetic

screen — but it mainly waits in an endless loop for you to press a key
on your keyboard to let it know what it’s supposed to do. Thereis a
memory cell inside (this, too, varies in its location) which the
computer constantly checks. On some computers, this cell always has
a255in it unless a key is pressed. If you press the RETURN key, a 13
will replace the 255. At last, after centuries (the computer’s sense of
time differs from ours) here is something to work with! Something
has come up to the gate at long last.

You notice the effect at once — everything on the screen moves
up one line because 13 (in the ASCII code) stands for carriage return.
How did it know that you were not intending to type the number 13
when it saw 13 in the keyboard sampling cell? Simple. The number
13, and any other keyboard input, is always read as an ASCII number.

In ASCIL, the digits from 0 through 9 are the only number
symbols. There is no single symbol for 13. So, when you typeinal
followed immediately by a 3, the computer’s input-from-the-
keyboard routine scans the line on the screen and notices that you
have not pressed the ““instant action’” keys (the STOP, BREAK, ESC,
TAB, cursor-control keys, etc.). Rather, you typed 1 and 3 and the
keyboard sampling cell (the ‘’which key pressed’’ address in zero
page) received the ASCII value for one and then for three. ASCII
digits are easy to remember in hex: zero is 30, 1is 31, and up to 39 for
nine. In decimal, they are 48 through 57.

The computer decides the ““meaning’’ of the numbers which
flow into and through it by the numbers’ context. If it is in
““alphabetic’’ mode, the computer will see the number 65 as “‘a’’; or if
it has just received an “’a,”’ it might see a subsequent number 65 as an
address to store the ““a’’. It all depends on the events that surround a
given number. We can illustrate this with a simple example:

2000 LDA #65 A9 (169) 41 (65)
2000 STA $65 85 (133) 41 (65)

This short ML program (the numbers in parentheses are the
decimal values) shows how the computer can '“expect’’ different
meanings from the number 65 (or 41 hex). When it receives an
instruction to perform an action, it is then prepared to act upon a
number. The instruction comes first and, since it is the first thing the
computer sees when it starts a job, it knows that the A9 (169) is
not @ number. It has to be one of the ML instructions from its set of
instructions (see Appendix A).

Instructions And Their Arguments

The computer would no more think of this first 169 as the number 169
than you would seal an envelope before the letter was inside. If you
are sending out a pile of Christmas cards, you perform instruction-
argument just the way the computer does: you (1) fill the envelope

54

Arithmetic 5

(instruction) (2) with a card (argument or operand). All actions do
something fo something. A computer’s action is called an instruction
(or, in its numeric form inside the computer’s memory it’s called an
opcode for operation code). The target of the action is called the
instruction’s argument (operand). In our program above, the
computer must LoaD Accumulator with 65. The # symbol means
“immediate’’; the target is right there in the next memory cell
following the mnemonic LDA, so it isn’t supposed to be fetched from
a distant memory cell.

Then the action is complete, and the next number (the 133 which
means STore Accumulator in zero page, the first 256 cells) is seen as
the start of another complete action. The action of storing always
signals that the number following the store instruction must be an
address of a cell in memory to store to.

Think of the computer as completing each action and then
looking for another instruction. Recall from the last chapter that the
target can be ““implied’’ in the sense that INX simply increases the X
register by one. That ““one’’ is “‘implied’’ by the instruction itself, so
there is no target argument in these cases. The next cell in this case
must also contain an instruction for a new instruction-argument cycle.

Some instructions call for a single-byte argument. LDA #65 is of
this type. You cannot LoaD Accumulator with anything greater than
255. The accumulator is only one byte large, so anything that can be
loaded into it can also be only a single byte large. Recall that $FF (255
decimal) is the largest number that can be represented by a single
byte. STA $65 also has a one byte argument because the target
address for the STore Accumulator is, in this case, in zero page.
Storing to zero page or loading from it will need only a one byte
argument — the address. Zero page addressing is a special case, but
an assembler program will take care of it for you. It will pick the
correct opcode for this addressing mode when you type LDA $65.
LDA $0065 would create ML code that performs the same operation
though it would use three bytes instead of two to do it.

The program counter is like a finger that keeps track of where
the computer is located in 1ts trip up a series of ML instructions. Each
instruction takes up one, two, or three bytes, depending on what
type of addressing is going on.

Context Defines Meaning
TXA uses only one byte so the program counter (PC) moves ahead
one byte and stops and waits until the value in the X register is moved
over to the accumulator. Then the computer asks the PC, ““Where are
we?’” and the PC s pointing to the address of the next instruction. It
never points to an argument. It skips over them because it knows
how many bytes each addressing mode uses up in a program.

Say that the next addresses contain an LDA $15. This is two
bytes long (zero page addressing). The PC is raised by two. The

55

5 Arithmetic

longest possible instruction would be using three bytes, such as LDA
$5000 (absolute addressing). Here the argument takes up two bytes.
Add that to the one byte used by any instruction and you have a total
of three bytes for the PC to count off. Zero page LDA is represented
by the number A5 and Absolute LDA is AD. Since the opcodes are
different, even though the mnemonics are identical, the computer
can know how many bytes the instruction will use up.

Having reviewed the way that your computer makes contextual
sense out of the mass of seemingly similar numbers of which an ML
program is composed, we can move on to see how elementary
arithmetic is performed in ML.

Additicn
Arithmetic is performed in the accumulator. The accumulator holds
the first number, the target address holds the second number (but is
not affected by the activities), and the result is left in the accumulator.
So:

LDA #$40 (remember, the # means immediate, the $ means

hex)
ADC #$01

will result in the number 41 being left in the accumulator. We could
then STA that number wherever we wanted. Simple enough. The
ADC means ADd with Carry. If this addition problem resulted in a
number higher than 255 (if we added, say, 250+ 6), then there would
have to be a way to show that the number left behind in the
accumulator was not the correct result. What's left behind is the carry.
What would happen after adding 250+ 6 is that the accumulator
would contain a 1. To show that the answer is really 256 (and not 1),
the "“carry flag’’ in the status register flips up. So, if that flag is up, we
know that the real answer is 255 plus the 1left in the accumulator.

To make sure that things never get confused, always put in a
CLC (CLear Carry) before any addition problems. Then the flag will
go down before any addition and, if it is up afterward, we’ll know
that we need to add 256 to whatever is in the accumulator. We'll
know that the accumulator holds the carry, not the total resulit.

One other point about the status register: there is another flag,
the ““decimal’’ flag. If you ever set this flag up (SED), all addition and
subtraction is performed in a decimal mode in which the carry flag is
set when addition exceeds 99. In this book, we are not going into the
decimal mode at all, so it’s a good precaution to put a CLear Decimal
mode (CLD) instruction as the first instruction of any ML program
you write. After you type CLD, the flag will be put down and the
assembler will move on to ask for your next instruction, but all the
arithmetic from then on will be as we are describing it.

Arithmetic 5

Adding Numbers Larger Than 255

We have already discussed the idea of setting aside some memory
cells as a table for data. All we do is make a note to ourselves that,
say, $80 and $81 are declared a zone for our personal use as a storage
area. Using a familiar example, let’s think of this zone as the address
that holds the address of a ball-like character for a game. As long as
the addresses are not in ROM, or used by our program elsewhere, or
used by the computer (see your computer’s memory map), it’s fine to
declare any area a data zone. Itis a good idea (especially with longer
programs) to make notes on a piece of paper to show where you
intend to have your subroutines, your main loop, your initialization,
and all the miscellaneous data — names, messages for the screen,
input from the keyboard, etc. This is one of those things that BASIC
does for you automatically, but which you must do for yourself in
ML.

When BASIC creates a string variable, it sets aside an area to
store variables. This is what DIM does. In ML, you set aside your own
areas by simply finding a safe and unused memory space and then
not writing a part of your program into it. Part of your data zone can
be special registers you declare to hold the results of addition or
subtraction. You might make a note to yourself that $80 and $81 will
hold the current address of the bouncing ball in your game. Since the
ball is constantly in motion, this register will be changing all the time,
depending on whether the ball hit a wall, a paddle, etc. Notice that
you need fwo bytes for this register. That is because one byte could
hold only a number from 0 to 255. Two bytes together, though, can
hold a number up to 65535.

In fact, a two-byte register can address any cell in most
microcomputers because most of us have machines with a total of
65536 memory cells (from zero to 65535). So if your ball is located (on
your screen) at $8000 and you must move it down one, just change
the ball-address register you have set up. If your screen has 40
columns, you would want to add 40 to this register.

The ball address register now looks like this: $0080 00 80
(remember that the higher, most significant byte, comes after the LSB,
the least significant byte in the 6502’s way of looking at pointers). We
want it to be: $0080 28 80. (The 28 is hex for 40.) In other words,
we're going to move the ball down one line on a 40-column screen.

Remember the "“indirect Y’ addressing mode described in the
previous chapter? It lets us use an address in zero page as a pointer to
another address in memory. The number in the Y register is added to
whatever address sits in 80,81, so we don’t STA to $80 or $81, but
rather to the address that they contain. STA ($80),Y qr, using the
simplified punctuation rules of the Simple Assembler: STA (80)Y.

57

5 Arithmetic

Moving A Ball Down

How to add $28 to the ball address register? First of all, CLC, clear the
carry to be sure that flag is down. To simplify our addition, we can set
aside another special register which serves only to hold the $28 as a
double-byte number all through the game: $4009 28 00. This is the
size of one screen line in our 40-column computer and it won’t
change. Since it moves the ball down one screen line, it can be used
equally well for a subtraction that would move the ball up one screen
line as well. Now to add them together:

1000 CLC (1000 is our ‘“add 40 to ball address”’
subroutine)

1001 LDA $80 (we fetch the LSB of ball address)

1003 ADC $4009 (LSB of our permanent screen line size)

1006 STA $80 (put the new result into the ball address)

1008 LDA $81 (get the MSB of ball address)

100A ADC $400A (add with carry to the MSB of screen value)

100DSTA $81 (update the ball address MSB)

That’s it. Any carry will automatically set the carry flag up
during the ADC action on the LSB and will be added into the result
when we ADC to the MSB. It’s all quite similar to the way that we
add ordinary decimal numbers, putting a carry onto the next column
when we get more than a 10 in the first column. And this carrying is
why we always CLC (clear the carry flag, putting it down) just before
additions. If the carry is set, we could get the wrong answer if our
problem did not result in a carry. Did the addition above cause a
carry?

Note that we need not check for any carries during the
MSB+MSB addition. Any carries resulting in a screen address greater
than $FFFF (65535) would be impossible on our machines. The 6502 is
permitted to address $FFFF tops, under normal conditions.

Subtraction
As you might expect, subtracting single-byte numbers is a snap:

LDA #541
SBC #$01

results in a $40 being left in the accumulator. As before, though, itis
good to make it a habit to deal with the carry ilag before each
calculation. When subtracting, however, you set the carry flag: SEC.
Why is unimportant. Just always SEC before any subtractions, and
your answers will be correct. Here’s double subtracting that will
move the ball up the screen one line instead of down one line:

$1020 SEC ($1020 is our ““take 40 from ball address’’
subroutine)
1021 LDA $80 (get the LSB of ball address)

58

Arithmetic 5

1023 SBC $4009 (LSB of our permanent screen line value)
1026 STA $80 (put the new result into the ball address)
1028 LDA$81 (get the MSB of ball address)

102A SBC $400A (subtract the MSB of screen value)

102D STA $81 (update the ball address MSB)

Multiplication And Division

Multiplying could be done by repeated adding. To multiply 5x4, you
could justadd 4+4+4+4+4. One way would be to set up two
registers like the ones we used above, both containing 04, and then
loop through the addition process five times. For practical purposes,
though, multiplying and dividing are much more easily accomplished
in BASIC. They simply are often not worth the trouble of setting up in
ML, especially if you will need results involving decimal points
(floating point arithmetic). Perhaps surprisingly, for the games and
personal computing tasks where creating ML routines is useful, there
is little use either for negative numbers or arithmetic beyond simple
addition and subtraction.

If you find that you need complicated mathematical structures,
create the program in BASIC, adding ML where super speeds are
necessary or desirable. Such hybrid programs are efficient and, in
their way, elegant. One final note: an easy way to divide the number
in the accumulator by two is to LSR it. Try it. Similarly, you can
multiply by two with ASL. We’ll define LSR and ASL in the next
chapter.

Double Comparison

One rather tricky technique is used fairly often in ML and should be
learned. It is tricky because there are two branch instructions which
seem to be worth using in this context, but they are best avoided. If
you are trying to keep track of the location of a ball on the screen, it
will have a two-byte address. If you need to compare those two bytes
against another two-byte address, you need a "“double compare”’
subroutine. You might have to see if the ball is out of bounds or if
there has been a collision with some other item flying around on
screen. Double compare is also valuable in other kinds of ML
programming.

The problem is the BPL (Branch on PLus) and BMI (Branch on
MInus) instructions. Don’t use them for comparisons. In any
comparisons, single- or double-byte, use BEQ to test if two numbers
are equal; BNE for not equal; BCS for equal or higher; and BCC for
lower. You can remember BCS because its *‘S”’ is higher and BCC
because its *“C’’ is lower in the alphabet. To see how to perform a
double-compare, here’s one easy way to do it. (See Program 5-1.)

59

5 Arithmetic

000T= QILSHL
¥00T= ¥3MO1

aNODdS > JgULSHL
aNODdAS < (ALSHL
UNODES = (JULSHL

S3LAY HDIH HHL HIVAWOD

SHALAY MOT HHL HIVAWOD

*n em en

om

0TI0T= LIVLS
900T= ¥IHDIH

Z00T= ANOOIES
S00T= T¥Nda

--=- 3dT14 TIEVT —---
SSvddanNd

N3 * 09710
JIM0TT DDd 0STO Zd 06 -020T1
JAHDIH SDd 0v10 94 09 -d101
1vn03d 0ad 0eTo Ld 04 -D101

T+dNOD3S Dd€S
1+031LS3L ¥adTl

0ZT0 OT €0 43 -6T0T
0TT0O OT TO0 4¥ -9T0T

aNodDdsS dwd 00T0 OT Z0 4D -€710T
aalsdal va1l LI¥LS 0600 OT 00 AV -0T0T
! 0800
9001$ 4a* JAHOIH 0L00
S001$ 4@a- 1vn03 0900
001 w@a- JAMOT 0500
! 0%00
Z00T1s$ da- aNoJdsS 0£00
000TS$ dQ* aarsdal 0200
0T0TS vg~ 0100

-asedwo) s|qnoq * |-§ weidoay

8

Arithmetic 5

This is a full-dress, luxurious assembler at work. With these
assemblers you can use line numbers and labels, add numbers to
labels (see the TESTED + 1 in line 0110), add comments, and all the
rest. Type in the hex bytes on the left (starting at $7010) and fill $7000
to $700F with zeros. Then try putting different numbers into $7000
and $7001 (this is the "tested’’ number) and $7002,7003 (the number
it is being tested against, the ““second’”” number in our label scheme
here). As you can see, you've got to keep it straight in your mind
which number is being tested or the results won’t make much sense.

Then, when you've set up two, double-byte numbers in the
registers ($7000 to $7003), you can RUN this routine by going to
$7010. All that will happen is that you will land on a BRK instruction.
Where you land tells you the results of the comparison. If the numbers
are equal, you land at $7005. If the tested number is less than the
second number, you'll end up in location $7004, and so forth. You
could test for BNE if all you needed to know is that they are not equal.
You could leave out some of the branches if you aren’t interested in
them. Play around with this until you’ve understood the 1deas
involved.

In a real program, you would be branching to addresses which
do something if the numbers are equal or one is greater or whatever.
This example sends the computer to $7004, $7005, or $7006 just to let
you see the effects of the double-compare subroutine. Above all,
remember that you use BCS and BCC (not BPL or BMI) when
comparing in ML.

Some might wonder why we use CMP to test the low bytes and
then switch and use SBC to test the high bytes. It’s just a
convenience. CoMPare is a subtraction of one number from another.
The only difference between them, really, is that subtraction replaces
the number with the result. LDA #05 . . . SBC #$02 . . . will leave a 03
in the accumulator. Using LDA #$05 . . . CMP #$02 . . . leaves the 05
in the accumulator and all that happens is that the flags are affected.
Both SBC and CMP have an effect on the Zero, Negative, and Carry
flags. In our double-compare we don’t care if there is a result left in
the accumulator or not. So, we can use either SBC or CMP. The
reason for starting off with CMP is that we don’t have to SEC (set the
carry flag) as we always need to do before an SBC.

61

6
The Instruction Set

There are 56 instructions (commands) available in 6502 machine
language. Most versions of BASIC have about 50 commands. Seme
BASIC instructions are rarely used by the majority of programmers:
USR, END, SGN, TAN, etc. Some, such as END and LET, contribute
nothing to a program and seem to have remained in the language for
nostalgic reasons. Others, like TAN, have uses that are highly
specialized. There are surplus commands in computer languages just
as there are surplus words in English. People don’t often say
culpability. They usually say guilt. The message gets across without
using the entire dictionary. The simple, common words can do the
job.

Machine language is the same as any other language in this
respect. There are around 20 heavily used instructions. The 36
remaining ones are far less often used. Load the disassembler
program in Appendix D and enter the starting address of your
computer’s BASIC in ROM. You can then read the machine language
routines which comprise it. You will quickly discover that the
accumulator is heavily trafficked (LDA and STA appear frequently),
but you will have to hunt to find an ROR, SED, CLV, RTI, or BVC.

ML, like BASIC, offers you many ways to accomplish a given
job. Some programming solutions, of course, are better than others,
but the main thing is to get the job done. An influence still lingers
from the early days of computing when memory space was rare and
expensive. This influence — that you should try to write programs
using up as little memory as possible — is usually safely ignored.
Efficient memory use will often be low on your list of objectives. It
could hardly matter if you used up 25 instead of 15 bytes to print a
message to your screen when your computer has space for programs
which exceeds 30,000 bytes.

Rather than memorize each instruction individually, we will
concentrate on the workhorses. Bizarre or arcane instructions will get
only passing mention. Unless you are planning to work with ML for
interfacing or complex mathematics and such, you will be able to
write excellent machine language programs for nearly any application
with the instructions we’ll focus on here.

For each instruction group, we will describe three things before
getting down to the details about programming with them. 1. What

63

6 The Instruction Set

the instructions accomplish. 2. The addressing modes you can use
with them. 3. What they do, if anything, to the flags in the Status
Register. All of this information is also found in Appendix A.

The Six Instruction Groups

The best way to approach the ’‘instruction set’” might be to break it
down into the following six categories which group the instructions
according to their functions: 1. The Transporters 2. The Arithmetic
Group 3. The Decision-makers 4. The Loop Group 5. The Subroutine
and Jump Group and 6. The Debuggers. We will deal with each group
in order, pointing out similarities to BASIC and describing the major
uses for each.

As always, the best way to learn is by doing. Move bytes
around. Use each instruction, typing a BRK as the final instruction to
see the effects. If you LDA #65, look in the A register to see what
happened. Then STA $12 and check to see what was copied into
address $12. If you send the byte in the accumulator (STA), what's
left behind in the accumulator? Is it better to think of bytes as being
copied rather than being sent?

Play with each instruction to get a feel for it. Discover the effects,
qualities, and limitations of these ML commands.

|. The Transporters:
LDA, LDX, LDY
STA, STX, STY
TAX, TAY

TXA, TYA

These instructions move a byte from one place in memory to
another. To be more precise, they copy what is in a source location
into a target location. The source location still contains the byte, but
after a “‘transporter’’ instruction, a copy of the byte is also in the
target. This does replace whatever was in the target.

All of them affect the N and Z flags, except STA, STX, and STY
which do nothing to any flag.

There are a variety of addressing modes available to different
instructions in this group. Check the chart in Appendix A for
specifics.

Remember that the computer does things one at a time. Unlike
the human brain which can carry out up to 1000 different instructions
simultaneously (walk, talk, and smile, all at once) — the computer
goes from one tiny job to the next. It works through a series of

64

The Instruction Set 6

instructions, raising the program counter (PC) each time it handles an
instruction.

If you do a TYA, the PC goes up by one to the next address and
the computer looks at that next instruction. STA $80 is a two-byte
long instruction, it’s zero page addressing, so the PC=PC+2. STA
$8500 is a three-byte long absclute addressing mode and PC=PC+3.

Recall that there’s nothing larger than a three-byte increment of
the PC. However, in each case, the PC is cranked up the right amount
to make it point te the address for the next instruction. Things would
get quickly out of control if the PC pointed to some argument,
thinking it was an instruction. It would be incorrect (and soon
disastrous) if the PC landed on the $15in LDA $15.

If you type SYS 1024 (or USR or CALL), the program counter is
loaded with $0400 and the computer ‘‘transfers control’* to the ML
instructions which are (we hope!) waiting there. It will then lock at
the byte in $0400, expecting it to be an ML instruction. It will do that
job and then look for the next instruction. Since it does this very fast,
it can seem to be keeping score, bouncing the ball, moving the
paddle, and everything else — simultaneously. It's not, though. It's
flashing from one task to another and doing it so fast that it creates
the illusion of simultaneity much the way that 24 still pictures per
second look like motion in movies.

The Programmer’s Time Warp

Movies are, of course, lots of still pictures flipping by in rapid
succession. Computer programs are composed of lots of individual
instructions performed in rapid succession.

Grasping this sequential, step-by-step activity makes our
programming job easier: we can think of large programs as single
steps, coordinated into meaningful, harmenious actions. Now the
computer will put a blank over the ball at its current address, then
add 40 to the ball’s address, then print a ball at the new address. The
main single-step action is moving information, as single-byte
numbers, from here to there, in memory. We are always creating,
updating, modifying, moving and destroying single-byte variables.
The moving is generally done from one double-byte address to
another. But it all locks smooth to the player during a game.

Programming in ML can pull you into an eerie time warp. You
might spend several hours constructing a program which executes in
seconds. You are putting together instructions which will later be
read and acted upon by coordinated electrons, moving at electron
speeds. It’s as if you spent an afternoon slowly and carefully drawing
up pathways and patterns which would later be a single bolt of
lightning.

65

6 The Instruction Set

Registers

In ML there are three primary places where variables rest briefly on
their way to memory cells: the X, the Y, and the A registers. And the
A register (the accumulator) is the most frequently used. X and Y are
used for looping and indexing. Each of these registers can grab a byte
from anywhere in memory or can load the byte right after its own
opcode (immediate addressing):

LDX $8000 (putsthe number at hex address 8000 into X,
without destroying it at $8000)

LDX #65 (puts the number 65 into X)

LDA and LDY work the same.

Be sure you understand what is happening here. LDX $1500
does not copy the “‘byte in the X register into address $1500."" It’s just
the opposite. The number (or ‘‘value’” as it’s sometimes called) in
$1500 is copied into the X register.

To copy abyte from X, Y, or A, use STX, STY, or STA. For these
“‘store-bytes’’ instructions, however, there is no immediate
addressing mode. No STA #15. It would make no sense to have STA
#15. That would be disruptive, for it would modify the ML program
itself. It would put the number 15 into the next cell beyond the STA
instruction within the ML program itself.

Another type of transporter moves bytes between registers —
TAY, TAX, TYA, TXA. See the effect of writing the following. Look at
the registers after executing this:

1000 LDA #65
TAY
TAX

The number 65 is placed into the accumulator, then transferred
to the Y register, then sent from the accumulator to X. All the while,
however, the A register (accumulator) is not being emptied. Sending
bytes is not a “‘transfer’” in the usual sense of the term ‘‘sending.”’
It’s more as if a Xerox copy were made of the number and then the
copy is sent. The original stays behind after the copy is sent.

LDA #15 followed by TAY would leave the 15 in the
accumulator, sending a copy of 15 into the Y register.

Notice that you cannot directly move a byte from the X to the Y
register, or vice versa. There is no TXY or TYX.

Flags Up And Down
Another effect of moving bytes around is that it sometimes throws a
flag up or down in the Status Register. LDA (or LDX or LDY) will
affect the N and Z, negative and zero, flags.

We will ignore the N flag. It changes when you use “"signed
numbers,’’ a special technique to allow for negative numbers. For our
purposes, the N flag will fly up and down all the time and we won't

66

The Instruction Set 6

care. If you're curious, signed numbers are manipulated by allowing
the seven bits on the right to hold the number and the leftmost bit
stands for positive or negative. We normally use a byte to hold values
from 0 through 255. If we were working with “‘signed’’ numbers,
anything higher than 127 would be considered a negative number
since the leftmost bit would be “on’’ — and an LDA #255 would be
thought of as -1. This is another example of how the same things (the
number 255 in this case) could signify several different things,
depending on the context in which it is being interpreted.

The Z flag, on the other hand, is quite important. It shows
whether or not some action during a program run resulted in a zero.
The branching instructions and looping depend on this flag, and
we'll deal with the important zero-result effects below with the BNE,
INX, etc., instructions.

No flags are affected by the STA, STX, or STY instructions.

The Stack Can Take Care Of Itself

There are some instructions which move bytes to and from the stack.
These are for advanced ML programmers. PHA and PLA copy a byte
from A to the stack, and vice versa. PHP and PLP move the status
register to and from the stack. TSX and TXS move the stack pointer to
or from the X register. Forget them. Unless you know precisely what
you are doing, you can cause havoc with your program by fooling
with the stack. The main job for the stack is to keep the return
addresses pushed inte it when you JSR (Jump To Subroutine). Then,
when you come back from a subroutine (RTS), the computer pulls the
addresses off the stack to find out where to go back to.

The one major exception to this warning about fiddling with the
stack is Atari’s USR instruction. It is a worthwhile technique to
master. Atari owners can move between BASIC and ML programs
fairly easily, passing numbers to ML via the stack. The parameters
(the passed numbers) must be pulled off the stack when the ML
program first takes control of the computer.

For most ML programming, on the other hand, avoid stack
manipulation until you are an advanced programmer. If you
manipulate the stack without great care, you'll give an RTS the wrong
address and the computer will travel far, far beyond your control. If
you are lucky, it sometimes lands on a BRK instruction and you fall
into the monitor mede. The odds are that you would get lucky
roughly once every 256 times. Don’t count on it. Since BRK is rare in
your BASIC ROM, the chances are pretty low. If your menitor has a
FILL instruction which lets you put a single number into large
amounts of RAM memory, you might want to fill the RAM with
*snow.”’” FILL 1000 8000 00 would put zeros into every address from
1000 to 8000. This greatly improves the odds that a crash will hit a
BRK.

67

6 The Instruction Set

As an aside, there is another use for a blanket of ‘zero page
snow.”” Many Atari programs rely on the fact that the computer
leaves page six ($0600-06FF) pretty much alone. The PET doesn’t
make much use of the second cassette buffer. So, you can safely put
an ML subroutine in these places to, for example, add a routine which
customizes an ML word processor. Does your Atari’s ML word-
processing program use any memory space in page six? Probably.
What locations does it use? Fill page six with 00’s, put the word~
processor through its paces, then look at the tracks, the non-zeros, in
the snow.

2. The Arithmetic Group:
ADC, SBC, SEC, CLC

Here are the commands which add, subtract, and set or clear the
carry flag. ADC and SBC affect the N, Z, C, and V (overflow) flags.
CLC and SEC, needless to say, affect the C flag and their only
addressing mode is Implied.

ADC and SBC can be used in eight addressing modes:
Immediate, Absclute, Zerc Page, (Indirect, X), (Indirect),Y, Zero
Page, X, and Absolute,X and Y.

Anthmetic was covered in the previous chapter. To review,
before any addition, the carry flag must be cleared with CLC. Before
any subtraction, it must be set with SEC. The decimal mode should
be cleared at the start of any program (the initialization): CLD. You
can multiply by two with ASL and divide by two with LSR. Note that
you can divide by four with LSR LSR or by eight with LSR LSR LSR.
Yeu could multiply anumber by eight with ASL ASL ASL. What
would this do to a number: ASL ASL ASL ASL? To multiply by
numbers which aren’t powers of two, use addition plus
multiplication. To multiply by ten, for example: copy the original
number temporarily to a vacant area of memory. Then ASL ASL ASL
to multiply it by eight. Then multiply the stored original by two with
a single ASL. Then add them together.

If you're wondering about the V flag, it is rarely used for
anything. You can forget about the branch which depends on it, BVC,
too. Only five instructions affect it and it relates to ""twos
complement’’ arithmetic which we have not touched on in this book.
Like decimal mode or negative numbers, you will be able to construct
your ML programs very effectively if you remain in complete
ignorance of this mode. We have largely avoided discussion of most
of the flags in the status register: N, V, B, D, and I. This aveidance
has alsc removed several branch instructions from cur consideration:
BMI, BPL, BVC, and BVS. These flags and instructions are not

68

The Instruction Set 6

usually found in standard ML programs and their use is confined to
specialized mathematical or interfacing applications. They will not be
of use or interest to the majority of ML programmers.

The two flags of interest to most ML programmers are the Carry
flag and the Zero flag. That is why, in the following section, we will
examine only the four branch instructions which test the Cand Z
flags. They are likely to be the only branching instructions that you'll
ever find occasion to use.

3. The Decision-Makers:
CMP, BNE, BEQ, BCC, BCS

The four ‘‘branchers’’ here — they all begin with a ’B*" — have
only one addressing mode. In fact, it’s an interesting mode unique to
the /B”’ instructions and created especially for them: relative
addressing. They do not address a memory location as an absolute
thing; rather, they address a location which is a certain distance from
their position in the ML code. Put another way, the argument of the
“’B’” instructions is an offset which is relative to their position. You
never have to worry about relocating ‘“B’’ instructions to another part
of memeory. You can copy them and they will work just as well in the
new location. That’s because their argument just says ‘“add five to the
present address’’ or “subtract twenty-seven,’’ or whatever argument
you give them. But they can’t branch further back than 127 or further
forward than 128 bytes.

None of the brancher instructions have any effect whatsoever on
any flags; instead, they are the instructions which look at the flags.
They are the only instructions that base therr activity on the condition
of the status register and its flags. They are why the flags exist at all.

CMP is an exception. Many times it is the instruction that comes
just before the branchers and sets flags for them to look at and make
decisions about. Lots of instructions — LDA is one — will set or
"“clear’” (put down) flags — but sometimes you need to use CMP to
find out what’s going on with the flags. CMP affects the N, Z, and C
flags. CMP has many addressing modes available to it: Immediate,
Absolute, Zero Page, (Indirect,X), (Indirect),Y, Zero Page, X, and
Absolute,X and Y.

The Foundations Of Computer Power

This decision-maker group and the following group (loops) are the
basis of our computers’ enormous strength. The decision-makers
allow the computer tc decide among two or more possible courses of
action. This decision is based on comparisons. If the ball hits a wall,
then reverse its direction. In BASIC, we use IF-THEN and ON-GOTO

69

6 The Instruction Set

structures to make decisions and to make appropriate responses to
conditions as they arise during a program run.

Recall that most micros use memory mapped video, which means
that you can treat the screen like an area of RAM memory. You can
PEEK and POKE into it and create animation, text, or other visual
events. In ML, you PEEK by LDA $VIDEO MEMORY and examine
what you've PEEKed with CMP. You POKE via STA $VIDEO
MEMORY.

CMP does comparisons. This tests the value at an address
against what is in the accumulator. Less common are CPX and CPY.
Assume that we have just added 40 to a register we set aside to hold
the current address-location of a ball on our screen during a game.
Before the ball can be POKEd into that address, we’d better make
sure that something else (a wall, a paddle, etc.) is not sitting there.
Otherwise the ball would pass right through walls.

Since we just increased the location register (this register, we
said, was to be at $80,81), we can use it to find out if there is blank
space (32) or something else (like a wall). Recall that the very useful
“indirect Y** addressing mode allows us to use an address in zero
page as a pointer to another address in memory. The number in the Y
register is added to whatever address sits in 80,81; so we don’t LDA
from 80 or 81, but rather from the address that they contain, plus Y’s
value.

To see what'’s in our potential ball location, we can do the
following:

LDY #0 (we want to fetch from the ball address itself, so we
don’t want to add anything to it. Y is set to zero.)

LDA (80),Y (fetch whatever is sitting where we plan to next
send the ball. To review Indirect, Y addressing once
more: say that the address we are fetching from here
is $1077. Address $80 would hold the LSB ($77) and
address $81 would hold the MSB ($10). Notice that
the argument of an Indirect, Y instruction only
mentions the lower address of the two-byte
pointer, the $80. The computer knows that it has to
combine $80 and $81 to get the full address — and
does this automatically.)

At this point in your game, there might be a 32 (ASCII for the
space or blank character) or some other number which we would
know indicated a wall, another player, a paddle, etc. Now that this
questionable number sits in the accumulator, we will CMP it against a
space. We could compare it with the number which means wall or the
other possibilities — it doesn’t matter. The main thing is to compare it:

70

The Instruction Set 6

2000 CMP #32 (is it a space?)

2002 BNE200A (Branch if Not Equal [if not 32] to address 200A,
which contains the first of a series of
comparisons to see if it’s a wall, a paddle, etc.
On the other hand, if the comparison worked, if
it was a 32 (so we didn’t Branch Not Equal),
then the next thing that happens is the
instruction in address 2004. We “'fall through”’
the BNE to an instruction which jumps to the
subroutine (JSR), which moves the ball into
this space and then returns to address 2007,
which jumps over the series of comparisons for
wall, paddle, etc.)

2004 JSR 3000 (the ball printing subroutine)

2007 JMP 2020 (jump over the rest of the comparisons)

200A CMP #128 (is it our paddle symbol?)

200C BNE 2014 (if not, continue to next comparison)

200E JSR 3050 (do the paddle-handling subroutineand . ..)

2011 JMP 2020 (jump over the rest, as before in 2007)

2014 CMP #144 (isitawall. .. and so forth with as many
comparisons as needed)

This structure is to ML what ON-GOTO or ON-GOSUB is to
BASIC. It allows you to take multiple actions based on a single LDA.
Doing the CMP only once would be comparable to BASIC’s IF-THEN.

Other Branching Instructions

In addition to the BNE we just looked at, there are BCC, BCS, BEQ,
BMI, BPL, BVC, and BVS. Learn BCC, BCS, BEQ, and BNE and you
can safely ignore the others.

All of them are branching, IF-THEN, instructions. They work in
the same way that BNE does. You write BEQ followed by the address
you want to go to. If the result of the comparison is *“yes, equal-to-
zero is true,”” then the ML program will jump to the address which is
the argument of the BEQ. “'True’’ here means that something EQuals
zero. One example that would send up the Z flag (thereby triggering
the BEQ) is: LDA #00. The action of loading a zero into A sets the Z
flag up.

You are allowed to ““branch’” either forward or backward from
the address that holds the ’B—’’ instruction. However, you cannot
branch any further than 128 bytes in either direction. If you want to
go further, you must JMP (JuMP) or JSR (Jump to SubRoutine). For all
practical purposes, you will usually be branching to instructions
located within 30 bytes of your ’B* instruction in either direction.
You will be taking care of most things right near where a CoMPare, or
other flag-setting event, takes place.

71

6 The Instruction Set

If you need to use an elaborate subroutine, simply JSR to it at the
target address of your branch:

2000 LDA 65

2002 CMP 85 (is what was in address 65 equal to what was in
address 85?)

2004 BNE 2009 (if Not Equal, branch over the next three bytes
which perform some elaborate job)

2006 JSR 4000 (at 4000 sits an elaborate subroutine to take care
of cases where addresses 65 and 85 turn out to
be equal)

2009 (continue with the program here)

If you are branching backwards, you’ve written that part of your
program, so you know the address to type in after a BNE or one of the
other branches. But, if you are branching forward, to an address in
part of the program not yet written — how do you know what to give
as the address to branch to? In complicated two-pass assemblers, you
can just use a word like “BRANCHTARGET"’, and the assembler will
"“pass’’ twice through your program when it assembles it. The first
"“pass’’ simply notes that your BNE is supposed to branch to
“BRANCHTARGET,”’ but it doesn’t yet know where that is.

When it finally finds the actual address of “BRANCHTARGET, "’
it makes a note of the correct address in a special label table. Then, it
makes a second ‘“‘pass’’ through the program and fills in (as the next
byte after your BNE or whatever) the correct address of
“BRANCHTARGET"’. All of this is automatic, and the labels make
the program you write (called the source code) look almost like English.
In fact, complicated assemblers can contain so many special features
that they can get close to the higher-level languages, such as BASIC:

(These initial definitions of labels TESTBYTE =80
are sometimes called ‘“equates.”’) NEWBYTE =99
2004 LDA TESTBYTE
2006 CMP NEWBYTE
2008 BNE BRANCHTARGET
200A JR SPECIALSUBROUTINE
BRANCHTARGET 200D . .. etc.

Instead of using lots of numbers (as we do when using the
Simple Assembler) for the target/argument of each instruction, these
assemblers allow you to define (‘’equate’’) the meanings of words like
“TESTBYTE’”" and from then on you can use the word instead of the
number. And they do somewhat simplify the problem of forward
branching since you just give (as above) address 200D a name,
“BRANCHTARGET,"" and the word at address 2009 is later replaced
with 200D when the assembler does its passes.

This is how the example above looks as the source code listing
from a two-pass, deluxe assembler:

72

The Instruction Set 6

N3 *
*o8d 013 !
€€ Y01 INILNO¥LNSTIVIDALS

“33S NOX SY ‘FYIHMANY MNONLS dId

on en . tm

N¥D QONY d377dWESSY FHL A9 QIUONDI Fd FIIM
SLNIWWOD ‘0S1Y¥ °*SANILNOYENS QNY Sd1dvy1]
XIW X713394 N¥D NoxX ! 00¥$ Ya1 LADYYILHON VYL
ANILNOYENSIVIDALS ¥SC
SAYQAQY IAILYIFY) ¢ LAYV IHONVYE ING
(ONISSEIQAY ADV4 0¥dZ) ! HLAAMINx dWD
F¥9Q0Y FIVIQIAWWI) !¢ ALAGLISALE ¥a1 LIViS
4
66% dQ° ALXEMEAN
08% za- ALX91S3L
$00Z% va°

0910
0sT10
0v10
0€T10
0Z10
0TTO
0010
0600
0800
0L00
0900
0500
0¥00
0€00
0200
0100

00 12

¥0 00
0Z 0T
£0

08

av

av
0
oa
S
6Y

~0102

~Q00?
-¥002
-800¢
-9007
-%002

*1-9 weadoud

73

6 The Instruction Set

Actually, we should note in passing that a 200D will not be the
number which finally appears at address 2009 to replace
““BRANCHTARGET"". To save space, all branches are indicated as an
““offset’’ from the address of the branch. The number which will
finally replace ““BRANCHTARGET’ at 2009 above will be three. This
is similar to the way that the value of the Y register is added to an
address in zero page during indirect Y addressing (also called
“indirect indexed’’). The number given as an argument of a branch
instruction is added to the address of the next instruction. So,
200A +3=200D. Our Simple Assembler will take care of all this for
you. All you need do is give it the 200D and it will compute and put
the 3 in place for you.

Forward Branch Solutions

There is one responsibility that you do have, though. When you are
writing 2008 BNE 200D, how do you know to write in 200D? You can’t
yet know to exactly which address up ahead you want to branch.
There are two ways to deal with this. Perhaps easiest is to just put in
BNE 2008 (have it branch to itself). This will result in a FE being
temporarily left as the target of your BNE. Then, you can make a note
on paper to later change the byte at 2009 to point to the correct
address, 200D. You've got to remember to “‘resolve’” that FE to
POKE in the number to the target address, or you will leave a little
bomb in your program — an endless loop. The Simple Assembler has
a POKE function. When you type POKE, you will be asked for the
address and value you want POKEd. So, by the time you have
finished coding 200D, you could just type POKE and then POKE
2009,3.

The other, even simpler, way to deal with forward branch
addresses will come after you are familiar with which instructions use
one, two, or three bytes. This BNE-JSR-TARGET construction is
common and will always be six away from the present address, an
offset of 6. If the branch instruction is at 2008, you just count off three:
200A, 200B, 200C and write BNE 200D. Other, more complex
branches such as ON-GOTO constructions will also become easy to
count off when you’re familiar with the instruction byte-lengths. In
any case, it’s simple enough to make a note of any unsolved branches
and correct them before running the program.

Alternatively, you can use a single ‘““unresolved’’ forward
branch in the Simple Assembler; see its instructions. You just type
BNE FORWARD.

Recall our previous warning about staying away from the
infamous BPL and BMI instructions? BPL (Branch on PLus) and BMI
(Branch on MInus) sound good, but should be avoided. To test for
less-than or more-than situations, use BCC and BCS respectively.
(Recall that BCC is alphabetically less-than BCS — an easy way to

74

The Instruction Set 6

remember which to use.) The reasons for this are exotic. We don’t
need to go into them. Just be warned that BPL and BMI, which sound
so logical and useful, are not. They can fail you and neither one lives
up to its name. Stick with the always trustworthy BCC, BCS.

Also remember that BNE and the other three main "'B’* group
branching instructions often don’t need to have a CMP come in front
of them to set a flag they can test. Many actions of many opcodes will
automatically set flags during their operations. For example, LDA $80
will affect the Z flag so you can tell if the number in address $80 was
or wasn’t zero by that flag. LDA $80 followed by BNE would branch
away if there were anything besides a zero in address $80. If in doubt,
check the chart of instructions in Appendix A to see which flags are
set by which instructions. You’ll soon get to know the common ones.
If you are really in doubt, go ahead and use CMP.

4. The Loop Group:
DEY, DEX, INY, INX, INC, DEC

INY and INX raise the Y and X register values by one each time
they are used. If Y is a 17 and you INY, Y becomes an 18. Likewise,
DEY and DEX decrease the value in these registers by one. There is
no such increment or decrement instruction for the accumulator.

Similarly, INC and DEC will raise or lower a memory address by
one. You can give arguments to them in four addressing modes:
Absolute, Zero Page, Zero Page, X and Absolute, X. These instructions
affect the N and Z flags.

The Loop Group are usually used to set up FOR-NEXT
structures. The X register is used most often as a counter to allow a
certain number of events to take place. In the structure FORI=1TO
10: NEXT I, the value of the variable I goes up by one each time the
loop cycles around. The same effect is created by:

2000 LDX #10

2002 DEX ("’DEcrement’’ or “’"DEcrease X'’ by 1)
2003 BNE 2002 (Branch if Not Equal [to zero] back up to
address 2002)

Notice that DEX is tested by BNE (which sees if the Z flag, the
zero flag, is up). DEX sets the Z flag up when X finally gets down to
zero after ten cycles of this loop. (The only other flag affected by this
loop group is the N [negative] flag for signed arithmetic.)

Why didn’t we use INX, INcrease X by 1? This would parallel
exactly the FORI=1TO 10, but it would be clumsy since our starting
count which is #10 above would have to be #245. This is because X
will not become a zero going up until it hits 255. So, for clarity and

75

6 The Instruction Set

simplicity, it is customary to set the count of X and then DEX it
downward to zero. The following program will accomplish the same
thing as the one above, and allow us to INX, but it too is somewhat
clumsy:

2000 LDX #0
2002 INX

2003 CPX #10
2005 BNE 2002

Here we had to use zero to start the loop because, right off the
bat, the number in X is INXed to one by the instruction at 2002. In any
case, it is a good idea to just memorize the simple loop structure in
the first example. It is easy and obvious and works very well.

Big Loops

How would you create a loop which has to be larger than 256 cycles?
When we examined the technique for adding large numbers, we
simply used two-byte units instead of single-byte urits to hold our
information. Likewise, to do large loops, you can count down in two
bytes, rather than one. In fact, this is quite similar to the idea of
““nested’” loops (loops within loops) in BASIC.

2000 LDX #10 (start of 1st loop)

2002 LDY #0 (startof 2nd loop)

2004 DEY

2005 BNE 2004 (if Y isn’t yet zero, loop back to DEcrease Y
again — this is the inner loop)

2007 DEX (reduce the outer loop by one)

2008 BNE 2002 (if X isn’t yet zero, go through the entire DEY
loop again)

200A (continue with the rest of the program . . .)

One thing to watch out for: be sure that aloop BNE’s back up to
one address after the start of its loop. The start of the loop sets a number
into a register and, if you keep looping up to it, you'll always be
putting the same number into it. The DEcrement (decrease by one)
instruction would then never bring it down to zero to end the
looping. You'll have created an endless loop.

The example above could be used for a “‘timing loop”’ similarly
to the way that BASIC creates delays with: FOR T=1TO 2000: NEXT
T. Also, sometimes you do want to create an endless loop (the BEGIN
... UNTIL in “structured programming’‘). A popular ‘“endless’’
loop structure in BASIC waits until the user hits any key: 10 GET K$:
IFK$=""""THEN 10.

10 IF PEEK (764) =255 THEN 10 is the way to accomplish this on
the Atari; it will cycle endlessly unless a key is pressed. The simplest
way to accomplish this in ML is to look on the map of your computer

76

The Instruction Set 6

to find which byte holds the ‘’last key pressed’’ number. On Upgrade
and 4.0 CBM/PET, it's address 151. On Atari, it's 764. On Apple II,
it's -16384. On VIC and Commodore 64, it’s 203 with a 64 in that
location if no key is pressed. In any event, when a key is pressed, it
deposits its special numerical value irito this cell. If no key is pressed,
some standard value stays there all the time. We'll use the CBM as
our model here. If no key is pressed, location 151 will hold a 255:

2000 LDA 151
2002 CMP #255
2004 BEQ 2000

If the CMP is EQual, this means that the LDA pulled a 255 out of
address 151 and, thus, no key is pressed. So, we keep looping until
the value of address 151 is something other than 255. This setup is
like GET in BASIC because not only does it wait until a key is
pressed, but it also leaves the value of the key in the accumulator
whenit’s finished.

Recall that a CMP performs a subtraction. It subtracts the number
in its argument from whatever number sits in the accumulator at the
time. LDA #12 CMP $15 would subtract a 5 from 12 if 5 is the number
“‘held’”’ in address 15. This is how it can leave flags set for testing by
BEQ or BNE. The key difference between this “‘subtraction”” and SBC
is that neither the accumulator nor the argument is affected at all by
it. They stay what they were. The result of the subtraction is *’thrown
away,”” and all that happens is that the status flags go up or down in
response to the result. If the CMP subtraction causes an answer of
zero, the Z flag flips up. If the answer is not zero, the Z flag flips
down. Then, BNE or BEQ can do their job — checking flags.

Dealing With Strings

You've probably been wondering how ML handles strings. It’s pretty
straightforward. There are essentially two ways: known-length and
zero-delimit. If you know how many characters there are in a
message, you can store this number at the very start of the text:
‘5ERROR.’’ (The number 5 will fit into one byte, at the start of the
text of the message.) If this little message is stored in your “'message
zone’’ — some arbitrary area of free memory you've set aside to hold
all of your messages — you would make a note of the particular
address of the “ERROR’’ message. Say it’s stored at 4070. To print it
out, you have to know where you “‘are’’ on your screen (cursor
position). Usually, the cursor address is held in two bytes in zero
page so you can use Indirect, Y addressing.

Alternatively, you could simply set up your own zero-page
pointers to the screen. For Apple Il and Commodore 64, the screen
memory starts at 1024; for CBM/PET it's 32768. In any case, you'll be
able to set up a *‘cursor management’’ system for yourself. To

6 The Instruction Set

simplify, we’ll send our message to the beginning of the Apple’s
screen:

2000 LDX 4070 (remember, we put the length of the message
as the first byte of the message, so we load our
counter with the length)

2003 LDY #0 (Y will be our message offset)

2005 LDA 4071,Y (gets the character at the address plus Y. Y is

zero the first time through the loop, so the
“’e’” from here lands in the accumulator. It

also stays in 4071. It’s just being copied into
the accumulator.)

2008 STA 1024,Y (we can make Y do double duty as the offset
for both the stored message and the screen-
printout. Y is still zero the first time through
this loop, so the “‘e’’ goes to 1024.)

2011 INY (prepare to add one to the message-storage
location and to the screen-print location)
2012 DEX (lower the counter by one)

2013 BNE 2005 (if X isn’t used up yet, go back and get-and-
print the next character, the “‘r’’)

If The Length Is Not Known
The alternative to knowing the length of a string is to put a special
character (usually zero) at the end of each message to show its limit.
This is called a delimiter. Note that Atari users cannot make zero the
delimiter because zero is used to represent the space character. A zero
works well for other computers because, in ASCII, the value 0 has no
character or function (such as carriage return) coded to it.
Consequently, any time the computer loads a zero into the
accumulator (which will flip up the Z flag), it will then know that it is
at the end of your message. At4070, we might have a couple of error
messages: '‘Ball out of range0Time nearly up!0”’. (These are numeric,
not ASCII, zeros. ASCII zero has a value of 48.)

To print the time warning message to the top of the CBM/PET
screen (this is in decimal):

2000 LDY #0

2002 LDA 4088,Y (get the 'T"")

2005 BEQ 2005 (the LDA just above will flip the zero flag up if
it loads a zero, so we forward branch out of our
message-printing loop. ““BEQ 2005 is a
dummy target, used until we know the actual
target and can POKE it into 2006.)

2007 STA 32768,Y (we're using the Y as a double-duty offset
again)

78

The Instruction Set 6

2010 INY

2011 JMP 2002 (in this loop, we always jump back. Our exit
from the loop is not here, at the end. Rather, it
is the Branch if EQual which is within the
loop.)

2014 (continue with another part of the program)

By the way, you should notice that the Simple Assembler will
reject the commas in this example and, if you’ve forgotten to set line
10 to accept decimal, it will not accept the single zero in LDY #0. Also,
if you get unpredictable results, maybe decimal 2000 is not a safe
address to store your ML. You might need to use some other practice
area.

Now that we know the address which follows the loop (2014),
we can POKE that address into the ‘’false forward branch’” we left in
address 2006. What number do we POKE into 20067? Just subtract 2007
from 2014, which is seven. Using the Simple Assembler, type POKE
and you can take care of this while you remember it. The assembler
will perform the POKE and then return to wait for your next
instruction.

Both of these ways of handling messages are effective, but you
must make a list on paper of the starting addresses of each message.
In ML, you have the responsibility for some of the tasks that BASIC
(at an expense of speed) does for you. Also, no message can be larger
than 255 using the methods above because the offset and counter
registers count only that high before starting over at zero again.
Printing two strings back-to-back gives a longer, but still under 255
byte, message:

2000 LDY #0

2002 LDX #2 (in this example, we use X as a counter which
represents the number of messages we are
printing)

2004 LDA 4000,Y (getthe ‘B’ from ‘‘Balloutof...”")
2007 BEQ 2016 (go toreduce {and check] the value of X)
2009 STA 32768,Y (we're using the Y as a double-duty offset

again)

2012 INY

2013 JMP 2004

2016 INY (we need to raise Y since we skipped that step
when we branched out of the loop)

2017 DEX (at the end of the first message, X will be

a'’1"”; at the end of the second message,
it will be zero)

2018 BNE 2004 (if X isn’t down to zero yet, re-enter the loop to
print out the second message)

79

6 The Instruction Set

To fill your screen with instructions instantly (say at the start of a
game), you can use the following mass-move. We'll assume that the
instructions go from 5000 to 5400 in memory and you want to transfer
them to the PET screen (at $8000). If your computer’s screen RAM
moves around (adding memory to VIC will move the screen RAM
address), you will need to know and substitute the correct address for
your computer in these examples which print to the screen. This is in
hex:

2000 LDY #0

2002 LDA 5000,Y

2005 STA 8000,Y

2008 LDA 5100,Y

200B STA 8100,Y

200E LDA 5200,Y

2011 STA 8200,Y

2014 LDA 5300,

2017 STA 8300,Y

201A INY

201B BNE 2002 (if Y hasn’t counted up to zero — which comes
just above 255 — go back and load-store the
next character in each quarter of the large
message)

This technique is fast and easy any time you want to mass-move
one area of memory to another. It makes a copy and does not disturb
the original memory. To mass-clear a memory zone (to clear the
screen, for example), you can use a similar loop, but instead of
loading the accumulator each time with a different character, you
load it at the start with the character your computer uses to blank the
screen. (Commodore including VIC and Apple=decimal 32;
Atari=0):

2000 LDA #20 (this example, in hex, blanks the PET screen)
2002 LDY #4

2004 STA 8000,Y

2007 STA 8100,

200A STA 8200,

200D STA 8300,

2010 DEY

2011 BNE 2004

Of course, you could simply JSR to the routine which already
exists in your BASIC to clear the screen. In Chapter 7 we will explore
the techniques of using parts of BASIC as examples to learn from and
also as a collection of ready-made ML subroutines. Now, though, we
can look at how subroutines are handled in ML.

80

The Instruction Set 6

5. The Subroutine and Jump Group:
JMP, JSR, RTS

JMP has only one useful addressing mode: Absolute. You give it a
firm, two-byte argument and it goes there. The argument is put into
the Program Counter and control of the computer is transferred to
this new address where an instruction there is acted upon. (There is a
second addressing mode, JMP Indirect, which, you will recall, has a
bug and is best left unused.)

JSR can only use Absolute addressing.

RTS’s addressing mode is Implied. The address is on the stack,
put there during the JSR.

None of these instructions has any effect on the flags.

JSR (Jump to SubRoutine) is the same as GOSUB in BASIC, but
instead of giving a line number, you give an address in memory
where the subroutine sits. RTS (ReTurn from Subroutine) is the same
as RETURN in BASIC, but instead of returning to the next BASIC
command, you return to the address following the JSR instruction
(it’s a three-byte-long ML instruction containing JSR and the two-byte
target address). JMP (JuMP) is GOTO. Again, you JMP to an address,
not a line number. As in BASIC, there is no RETURN from a JMP.

Some Further Cautions About The Stack

The stack is like a pile of coins. The last one you put on top of the pile
is the first one pulled off later. The main reason that the 6502 sets
aside an entire page of memory especially for the stack is that it has to
know where to go back to after GOSUBs and JSRs.

A JSR instruction pushes the correct return address onto the
“‘stack’’ and, later, the next RTS ""pulls’ the top two numbers off the
stack to use as its argument (target address) for the return. Some
programmers, as we noted before, like to play with the stack and use
it as a temporary register to PHA (PusH Accumulator onto the stack).
This sort of thing is best avoided until you are an advanced ML
programmer. Stack manipulations often result in a very confusing
program. Handling the stack is one of the few things that the
computer does for you in ML. Let it.

The main function of the stack (as far as we're concerned) is to
hold return addresses. It's done automatically for us by "“pushes”’
with the JSR and, later, “pulls’”’ (sometimes called pops) with the RTS.
If we don 't bother the stack, it will serve us well. There are thousands
upon thousands of cells where you could temporarily leave the
accumulator — or any other value — without fouling up the orderly
arrangement of your return addresses.

Subroutines are extremely important in ML programming. ML
programs are designed around them, as we’ll see. There are times

81

6 The Instruction Set

when you'll be several subroutines deep (one will call another which
calls another); this is not as confusing as it sounds. Your main Player-
input routine might call a print-message subroutine which itself calls
a wait-until-key-is-pressed subroutine. If any of these routines PHA
(PusH the Accumulator onto the stack), they then disturb the
addresses on the stack. If the extra number on top of the stack isn’t
PLA-ed off (PulL Accumulator), the next RTS will pull off the number
that was PHA’ed and half of the correct address. It will then merrily
return to what it thinks is the correct address: it might land
somewhere in the RAM, it might go to an address at the outer reaches
of your operating system — but it certainly won’t go where it should.

Some programmers like to change a GOSUB into a GOTO (in
the middle of the action of a program) by PLAPLA. Pulling the two
top stack values off has the effect of eliminating the most recent RTS
address. It does leave a clean stack, but why bother to JSR at all if you
later want to change it to a GOTO? Why not use JMP in the first
place?

There are cases, too, when the stack has been used to hold the
current condition of the flags (the Status Register byte). This is
pushed/pulled from the stack with PHP (PusH Processor status) and
PLP (PulL Processor status). If you should need to “'remember’’ the
condition of the status flags, why not just PHP PLA STA $NN?
("’NN’’ means the address is your choice.) Set aside a byte
somewhere that can hold the flags (they are always changing inside
the Status Register) for later and keep the stack clean. Leave stack
acrobatics to FORTH programmers. The stack, except for advanced
ML, should be inviolate.

FORTH, an interesting language, requires frequent stack
manipulations. But in the FORTH environment, the reasons for this
and its protocol make excellent sense. In ML, though, stack
manipulations are a sticky business.

Saving The Current Environment
There is one exception to our leave-the-stack-alone rule. Sometimes
(especially when you are ““borrowing’’ a routine from BASIC) you
will want to take up with your own program from where it left off.
That is, you might not want to write a ““clear the screen’’ subroutine
because you find the address of such a routine on your map of
BASIC. However, you don’t know what sorts of things BASIC will do
in the meantime to your registers or your flags, etc. In other words,
you just want to clear the screen without disturbing the flow of your
program by unpredictable effects on your X, Y, A, and status
registers. In such a case, you can use the following "’Save the state of
things’’ routine:

2000 PHP (push the status register onto the stack)

2001 PHA

82

The Instruction Set 6

2002 TXA

2003 PHA

2004 TYA

2005 PHA ’

2006 JSR (toihe clear-the-screen routine in BASIC. The RTS
will remove the return address [2009], and you'll
have a mirror image of the things you had pushed
onto the stack. They are pulled out in reverse order,
as you can see below. This is because the first pull
from the stack will get the most recently pushed
number. If you make a little stack of coins, the first
one you pull off will be the last one you put onto the
stack.)

2009 PLA (now we reverse the order to get them back)

2010 TAY

2011 PLA

2012 TAX

2013 PLA (this one stays in A)

2014 PLP (the status register)

Saving the current state of things before visiting an uncharted,
unpredictable subroutine is probably the only valid excuse for playing
with the stack as a beginner in ML. The routine above is constructed
to leave the stack intact. Everything that was pushed on has been
pulled back off.

The Significance Of Subroutines

Maybe the best way to approach ML program writing — especially a
large program — is to think of it as a collection of subroutines. Each of
these subroutines should be small. It should be listed on a piece of
paper followed by a note on what it needs as input and what it gives
back as parameters. "’Parameter passing’’ simply means that a
subroutine needs to know things from the main program
(parameters) which are handed to it (passed) in some way.

The current position of the ball on the screen is a parameter
which has its own “"register’’ (we set aside a register for it at the start
when we were assigning memory space on paper). So, the “’send the
ball down one space’’ subroutine is a double-adder which adds 40 or
whatever to the “current position register.”” This value always sits in
the register to be used any time any subroutine needs this
information. The *’send the ball down one’” subroutine sends the
current-position parameter by passing it to the current-position
register. T

This is one way that parameters are passed. Another illustration
might be when you are telling a delay loop how long to delay. Ideally,
your delay subroutine will be multi-purpose. That is, it can delay for

83

6 The Instruction Set

anywhere from Y2 second 10 60 seconds or something. This means
that the subroutine itself isn‘t locked into a particular length of delay.
The main program will “‘pass’’ the amount of delay to the subroutine.

3000 LDY #0
3002 INY

3003 BNE 3002
3005 DEX

3006 BNE 3000
3008 RTS

Notice that X never is initialized (set up) here with any particular
value. This is because the value of X 1s passed to this subroutine from
the main program. If you want a short delay, you would:

2000 LDX #5 (decimal)
2002 JSR 3000

And for a delay which is twice as long as that:

2000 LDX #10
2002 JSR 3000

In some ways, the less a subroutine does, the better. If it’s not
entirely self-sufficient, and the shorter and simpler it is, the more
versatile it will be. For example, our delay above could function to
time responses, to hold sounds for specific durations, etc. When you
make notes, write something like this: 3000 DELAY LOOP (Expects
duration in X. Returns 0 1n X.). The longest duration would be LDX
#0. This is because the first thing that happens to X in the delay
subroutine is DEX. If you DEX a zero, you get 255. If you need longer
delays than the maximum value of X, simply:

3000 LDX #0

3002 JSR 3000

3005 JSR 3000 (notice that we don’t need to set X to zero this
second time. It returns from the subroutine
with a zeroed X.)

You could even make aloop of the JSR’s above for extremely
long delays. The point to notice here is that it helps to document each
subroutine in your library: what parameters it expects, what
registers, flags, etc., it changes, and what it leaves behind as a result.
This documentation — a single sheet of paper will do — helps you
remember each routine’s address and lets you know what effects and
preconditions are involved.

JMP

Like BASIC’s GOTO, JMP is easy to understand. It goes to an
address: JMP 5000 leaps from wherever it is to start carrying out the

The Instruction Set 6

instructions which start at 5000. It doesn't affect any flags. It doesn’t
do anything to the stack. It's clean and simple. Yet some advocates of
"’structured programming’’ suggest avoiding JMP (and GOTO in
BASIC). Their reasoning is that JMP is a shortcut and a poor
programming habit.

For one thing, they argue, using GOTO makes programs
confusing. If you drew lines to show a program’s “’flow’” (the order
in which instructions are carried out), a program with lots of GOTO’s
would look like boiled spaghetti. Many programmers feel, however,
that JMP has its uses. Clearly, you should not overdo it and lean
heavily on JMP. In fact, you might see if there isn’t a better way to
accomplish something if you find yourself using it all the time and
your programs are becoming impossibly awkward. But JMP is
convenient, often necessary in ML.

A 6502 Bug

On the other hand, there is another, rather peculiar JMP form which
is hardly ever used in ML: JMP (5000). This is an indirect jump which
works like the indirect addressing we’'ve seen before. Remember that
in Indirect.Y addressing (LDA (81),Y), the number in Y is added to
the address found in 81 and 82. This address is the real place we are
LDAiIng from, sometimes called the effective address. If 81 holds a 00,
82 holds a 40, and Y holds a 2, the address we LDA from is going to be
4002. Similarly (but without adding Y), the effective address formed
by the two bytes at the address inside the parentheses becomes the
place we JMP to in JMP (5000).

There are no necessary uses for this instruction. Best avoid it the
same way you avoid playing around with the stack until you're an
ML expert. If you find it in your computer’s BASIC ROM code, 1t will
probably be involved in an ““indirect jump table,”” a series cf registers
which are dynamic. That is, they can be changed as the program
progresses. Such a technique is very close to a self-altering program
and would have few uses for the beginner in ML programming.
Above all, there is a bug in the 6502 itself which causes indjrect JMP to
malfunction under certain circumstances. Put JMP ($NNNN) into the
same category as BPL and BMI. Avoid all three.

If you decide you must use indirect JMP, be sure to avoid the
edge of pages: JMP (NNFF). The “NN’’ means "“any number."’
Whenever the low byte is right on the edge, 1f $FF 1s ready to reset to
00, this instruction will correctly use the low byte (LSB) found in
address $NNFF, but it will not pick up the high byte (MSB) from
$NNFF plus one, as it should. It gets the MSB from NNOO!

Here’s how the error would look if you had set up a pointer to
address $5043 at location $40FF:

$40FF 43
$4100 50

85

6 The Instruction Set

Your intention would be to JMP to $5403 by bouncing off this
pointer. You would write JMP ($40FF) and expect that the next
instruction the computer would follow would be whatever is written
at $5043. Unfortunately, you would land at $0043 instead (if address
$4000 held a zero). It would get its MSB from $4000.

6. Debuggers:
BRK and NOP

BRK and NOP have no argument and are therefore members of that
class of instructions which use only the Implied addressing mode.
They also affect no flags in any way with which we would be
concerned. BRK does affect the I and B flags, but since it is a rare
situation which would require testing those flags, we can ignore this
flag activity altogether.

After you’ve assembled your program and it doesn’t work as
expected (few do), you start debugging. Some studies have shown that
debugging takes up more than fifty percent of programming time.
Such surveys might be somewhat misleading, however, because
"’making improvements and adding options’” frequently takes place
after the program is allegedly finished, and would be thereby
categorized as part of the debugging process.

In ML, debugging is facilitated by setting breakpoints with BRK
and then seeing what’s happening in the registers or memory. If you
insert a BRK, it has the effect of halting the program and sending you
into your monitor where you can examine, say, the Y register to see if
it contains what you would expect it to at this point in the program.
It’s similar to BASIC’s STOP instruction:

2000 LDA #15
2002 TAY
2003 BRK

If you run the above, it will carry out the instructions until it gets
to BRK when it will put the program counter plus two on the stack, put
the status register on the stack, and load the program counter with
whatever is in addresses $FFFE, $FFFF. These are the two highest
addresses in your computer and they contain the vector (a pointer) for
an interrupt request (IRQ).

These addresses will point to a general interrupt handler and, if
your computer has a monitor, its address might normally be found
here. Remember, though, that when you get ready to CONT, the
address on the top of the stack will be the BRK address plus two.
Check the program counter (it will appear when your monitor
displays the registers) to see if you need to modify it to point to the

86

The Instruction Set 6

next instruction instead of pointing, as it might be, to an argument.
Some monitors adjust the program counter when they are BRKed to
so that you can type g (go) in the same way that you would type
CONT in BASIC. See the instructions for your particular monitor.

Debugging Methods

In effect, you debug whenever your program runs merrily along and
then does something unexpected. It might crash and lock you out.
You look for a likely place where you think it is failing and just insert a
BRK right over some other instruction. Remember that in the monitor
mode you can display a hex dump and type over the hex numbers on
screen, hitting RETURN to change them. In the example above,
imagine that we put the BRK over an STY 8000. Make a note of the
hex number of the instruction you covered over with the BRK so you
can restore it later. After checking the registers and memory, you
might find something wrong. Then you can fix the error.

If nothing seems wrong at this point, restore the original STY
over the BRK, and insert a BRK in somewhere further on. By this
process, you can isolate the cause of an oddity in your program.
Setting breakpoints (like putting STOP into BASIC programs) is an
effective way to run part of a program and then examine the
variables.

If your monitor or assembler allows single-stepping, this can be an
excellent way to debug, too. Your computer performs each
instruction in your program one step at a time. This is like having
BRK between each instruction in the program. You can control the
speed of the stepping from the keyboard. Single-stepping automates
breakpoint checking. It is the equivalent of the TRACE command
sometimes used to debug BASIC programs.

Like BRK ($00), the hex number of NOP ($EA) is worth
memorizing. If you're working within your monitor, it will want you
to work in hex numbers. These two are particularly worth knowing.
NOP means No OPeration. The computer slides over NOP’s without
taking any action other than increasing the program counter. There
are two ways in which NOP can be effectively used.

First, it can be an eraser. If you suspect that STY 8000 is causing
all the trouble, try running your program with everything else the
same, but with STY 8000 erased. Simply put three EA’s over the
instruction and argument. (Make a note, though, of what was under
the EA’s so you can restore 1t.) Then, the program will run without
this instruction and you can watch the effects.

Second, it is sometimes useful to use EA to temporarily hold
open some space. If you don’t know something (an address, a
graphics value) during assembly, EA can mark that this space needs
to be filled in later before the program is run. As an instruction, it will

87

6 The Instruction Set

let the program slide by. But, remember, as an addréss or a number,
EA will be thought of as 234. In any case, EA could become your "’fill
this in’’ alert within programs in the way that we use self-branching
(leaving a zero after a BNE or other branch instruction) to show that
we need to put in a forward branch’s address.

When the time comes for you to “tidy up’’ your program, use
your monitor’s ““find’’ command, if it has one. This is a search
routine: you tell it where to start and end and what to look for, and it
prints out the addresses of any matches it finds. It's a useful utility; if
your monitor does not have a search function, you might consider
writing one as your first large ML project. You can use some of the
ideas in Chapter 8 as a starting point.

Less Common Instructions

The following instructions are not often necessary for beginning
applications, but we can briefly touch on their main uses. There are
several “'logical’’ instructions which can manipulate or test individual
bits within each byte. This is most often necessary when interfacing.
If you need to test what’s coming in from a disk drive, or translate on
a bit-by-bit level for I/O (input/output), you might work with the
““logical”” group.

In general, this 1s handled for you by your machine’s operating
system and is well beyond beginning ML programming. I/O is
perhaps the most difficult, or at least the most complicated, aspect of
ML programming. When putting things on the screen, programming
is fairly straightforward, but handling the data stream into and out of
a disk is pretty involved. Timing must be precise, and the
preconditions which need to be established are complex.

For example, if you need to ““mask’’ a byte by changing some of
its bits to zero, you can use the AND instruction. After an AND, both
numbers must have contained a 1 in any particular bit position for it
to result in a 11in the answer. This lets you set up a mask. 60001111
will zero any bits within the left four positions. So, 00001111 AND
11001100 result in 00001100. The unmasked bits remained
unchanged, but the four high bits were all masked and zeroed. The
ORA instruction is the same, except it lets you mask to set bits (make
them a 1). 11110000 ORA 11001100 results in 11111100. The
accumulator will hold the results of these instructions.

EOR (Exclusive OR) permits you to “‘toggle’’ bits. If a bit is one it
will go to zero. If it’s zero, it will flip to one. EOR 1s sometimes useful
in games. If you are heading in one direction and you want to go back
when bouncing a ball off a wall, you could “‘toggle.”” Let’s say that
you use a register to show direction: when the ball’s going up, the
byte contains the number 1(00000001), but down is zero (00000000).
To toggle this least significant bit, you would EOR with 00000001.
This would flip 1 to zero and zero to 1. This action results in the

88

The Instruction Set 6

complement of a number. 11111111 EOR 11001100 results in 00110011.

To know the effects of these logical operators, we can look them
up in “‘truth tables’” which give the results of all possible
combinations of zeros and ones:

AND OR EOR
0AND 0=0 0OR0=0 0EORO0=0
0AND1=0 00R1=1 0EOR1=1
1AND 0=0 10R0=1 1EOR0=1
1AND 1=1 10R1=1 1EOR1=0

BIT Tests

Another instruction, BIT, also tests (it does an AND), but, like CMP,
it does not affect the number in the accumulator — it merely sets flags
in the status register. The N flag is set (has a 1) if bit seven has a 1 (and
vice versa). The V flag responds similarly to the value in the sixth bit.
The Z flag shows if the AND resulted in zero or not. Instructions, like
BIT, which do not affect the numbers being tested are called non-
destructive,

We discussed LSR and ASL in the chapter on arithmetic: they
can conveniently divide and multiply by two. ROL and ROR rotate the
bits left or right in a byte but, unlike with the Logical Shift Right or
Arithmetic Shift Left, no bits are dropped during the shift. ROL will
leave the 7th (most significant) bit in the carry flag, leave the carry flag
in the Oth (least significant bit), and move every other bit one space to
the left:

ROL 11001100 (with the carry flag set) results in
10011001 (carry is still set, it got the leftmost 1)

If you disassemble your computer’s BASIC, you may well look
i vain for an example of ROL, but 1t and ROR are available in the
6502 instruction set if you should ever find a use for them. Should
you go into advanced ML arithmetic, they can be used for
multiphcation and division routines.

Three other instructions remain: SEI (SEt Interrupt), RTI
(ReTurn from Interrupt), and CLI (CLear Interrupt). These operations
are, also, beyond the scope of a book on beginning ML programming,
but we'll briefly note their effects. Your computer gets busy as soon as
the power goes on. Things are always happening: timing registers are
being updated; the keyboard, the video, and the peripheral
connectors are being refreshed or examined for signals. To
“interrupt’’ all this activity, you can SEI, perform some task, and
then CLI to let things pick up where they left off

SEI sets the interrupt flag. Following this, all maskable
interruptions (things which can be blocked from interrupting when
the interrupt status flag is up) are no longer possible. There are also

89

6 The Instruction Set

non-maskable interrupts which, as you might guess, will jump in
anytime, ignoring the status register.

The RTl instruction (ReTurn from Interrupt) restores the
program counter and status register (takes them from the stack), but
the X, Y, etc., registers might have been changed during the
interrupt. Recall that our discussion of the BRK involved the above
actions. The key difference is that BRK stores the program counter
plus two on the stack and sets the B flag on the status register. CLI
puts the interrupt flag down and lets all interrupts take place.

If these last instructions are confusing to you, it doesn’t matter.
They are essentially hardware and interface related. You can do
nearly everything you will want to do in ML without them. How
often have you used WAIT in BASIC?

7
Borrowing From BASIC

BASIC is a collection of ML subroutines. It is a large web of hundreds
of short, ML programs. Why not use some of them by JSRing to
them? At times, this is in fact the best solution to a problem.

How would this differ from BASIC itself? Doesn’t BASIC just
create a series of JSR’s when it RUNs? Wouldn't using BASIC’s ML
routines in this way be just as slow as BASIC?

In practice, you will not be borrowing from BASIC all that much.
One reason is that such JSRing makes your program far less portable,
less easily RUN on other computers or other models of your
computer. When you JSR to an address within your ROM set to save
yourself the trouble of re-inventing the wheel, you are,
unfortunately, making your program applicable only to machines
which are the same model as yours. The subroutine to allocate space
for a string in memory is found at $D3D2 in the earliest PET model. A
later version of PET BASIC (Upgrade) used $D3CE and the current
models use $C61D. With Atari, Texas Instruments, Sinclair and other
computers as exceptions, Microsoft BASIC is nearly universally used
in personal computers. But each computer’s version of Microsoft
differs in both the order and the addresses of key subroutines.

Kernals And Jump Tables

To help overcome this lack of portability, some computer
manufacturers set aside a group of frequently used subroutines and
create a Jump Table, or kernal, for them. The idea is that future,
upgraded BASIC versions will still retain this table. It would look
something like this:

FFCF 4C 15 F2 (INPUT one byte)
FFD2 4C 66 F2 (OUTPUT one byte)
FFD5 4C 01 F4 (LOAD something)
FFD8 4C DD Fé6 (SAVE something)

This example is part of the Commodore kernal.

There is a trick to the way this sort of table works. Notice that
each member of the table begins with 4C. That’s the JMP instruction
and, if you land on it, the computer bounces right off to the address
which follows. $FFD2 is a famous one in Commodore computers. If
you load the accumulator with a number (LDA #65) and then JSR
FFD2, a character will be printed on the screen. The screen location is

91

7 Borrowing From BASIC

incremented each time you use it, so it works semj-automatically. In
other words, it also keeps track of the current ““cursor position’ for
you.

This same ““output’’ routine will work for a printer or a disk or a
tape — anything that the computer sees as an output device.
However, unless you open a file to one of the other devices (it’s
simplest to do this from BASIC in the normal way and then SYS,
USR, or CALL to an ML subroutine), the computer defaults to
(assumes) the screen as the output device, and FFD2 prints there.

What's curious about such a table is that you JSR to FFD2 as you
would to any other subroutine. But where’s the subroutine? It’s not
at FFD5. That’s a different JMP to the LOAD code. A naked JMP
(there is no RTS here in this jump table) acts like a rebound: you hit
one of these JMP’s in the table and just bounce off 1t to the true
subroutine,

The real subroutine (at $F266 in one BASIC version’s $FFD2’s
JMP) will perform what you expect. Why not just JSR to F266 directly?
Because, on other models of Commodore computers — Original
BASIC, for example — the output subroutine is not located at F266. It's
somewhere else. But a JSR to FFD2 will rebound you to the right
address in any Commodore BASIC. All Commodore machines have
the correct JMP for their particular BASIC set up at FFD2. This means
that you can JSR to FFD2 on any Commodore computer and get
predictable results, an output of a byte.

So, if you look into your BASIC code and find a series of JMP’s
(4C xx xx 4C xx xx), it’s ajump table. Using it should help make your
programs compatible with later versions of BASIC which might be
released. Though this is the purpose of such tables, there are never
any guarantees that the manufacturer will consistently observe them.
And, of course, the program which depends on them will certainly
not work on any other computer brand.

What's Fastest?
Why, though, is a JSR into BASIC code faster than a BASIC program?
When a BASIC program RUNEs, it is JSRing around inside itself. The
answer is that a program written entirely in ML, aside from the fact
that it borrows only sparingly from BASIC prewritten routines,
differs from BASIC in an important way. A finished ML program is
like compiled code; that is, it is ready to execute without any overhead.
In BASIC each command or instruction must be interpreted as it
RUNSs. This is why BASIC is called an ““interpreter.”” Each instruction
must be looked up in a table to find its address in ROM. This takes
time. Your ML code will contain the addresses for its JSR’s. When ML
runs, the instructions don’t need the same degree of interpretation by
the computer.

There are special programs called compilers which take a BASIC

92

Borrowing From BASIC 7

program and transform (‘’compile’’) it into ML-like code which can
then be executed like ML, without having to interpret each
command. The JSR’s are within the compiled program, just as in ML.
Ordinarily, compiled programs will RUN perhaps 20 to 40 times
faster than the BASIC program they grew out of. (Generally, there is
a price to pay in that the compiled version is almost always larger
than its BASIC equivalent.)

Compilers are interesting; they act almost like automatic ML -
writers. You write it in BASIC, and they translate it into an ML-like
program. Even greater improvements in speed can be achieved if a
program uses no floating point (decimal points) in the arithmetic.
Also, there are “’optimized’” compilers which take longer during the
translation phase to compile the finished program, but which try to
create the fastest, most efficient program design possible. A good
compiler can translate an 8K BASIC program in two or three minutes.

GET And PRINT

Two of the most common activities in a computer program are getting
characters from the keyboard and printing them to the screen. To
illustrate how to use BASIC from within an ML program, we’ll show
how both of these tasks can be accomplished from within ML.

For the Atari, $F6E2 works like BASIC's GET#. If you JSR $F6E2,
the computer will wait until a key is pressed on the keyboard. Then,
when one is pressed, the numerical code for that key is put into the
accumulator, and control is returned to your ML program. To try this,
type:

2000 JSR $F6E2
2003 BRK

Then run this program and hit a key on the keyboard. Notice
that the code number for that letter appears in the accumulator.

Another location within Atari’s BASIC ROM will print a
character (whatever’s in the accumulator) to the next available
position on the screen. This is like PUT#6. Try combining the above
GET# with this:

2000 JSR $F6E2 (get the character)
2003 JSR $F6A4 (print to the screen)
2006 BRK

Using $F6A4 changes the numbers in the X and Y registers
(explained below).

For the Apple, there are BASIC routines to accomplish these
same jobs. Apple Microsoft BASIC’s GET waits for user input.
(Commodore’s GET doesn’t wait for input.)

2000 JSR $FDOC (GET a byte from the keyboard)
2003 RTS (the character is in the accumulator)

93

7 Borrowing From BASIC

This address, $FDOC, will wait until the user typesin a
character. It will position a flashing cursor at the correct position.
However, it will not print an "“echo,’” an image of the character on the
screen.

To print to the screen:

2000 LDA #65 (put’‘a’ into the accumulator)
2002 JSR $FBFD (printit)

For Commodore computers (VIC, 64, and PET/CBM) which also use
Microsoft BASIC, the two subroutines are similar:

2000 JSR $FFE4 (GET whatever key is being pressed)

2003 BEQ 2000 (if no key is pressed, a zero is in the
accumulator, so you BEQ back and try for a
character again)

2005 RTS (the character’s value is in the accumulator)

The $FFE4 is another one of those ‘’kernal’’ jump table locations
common to all Commodore machines. It performs a GET.

An ML routine within your BASIC which keeps track of the
current cursor position and will print things to the screen is often
needed in ML programming.

The VIC, 64, and PET/CBM use the routine called by $FFD2.
Apple uses $FDED. Atari uses $F6A4.

You can safely use the Y register to print out a series of letters (Y
used as an index) in any BASIC except Atari’s. You could print out a
whole word or block of text or graphics stored at $1000 in the
following way. (See Program 7-1.)

Atari’s BASIC alters the X and Y registers when it executes its
“/print it’” subroutine so you need to keep count some other way.
Whenever you borrow from BASIC, be alert to the possibility that the
A, X, or Y registers, as well as the flags in the status register, might
well be changed by the time control is returned to your ML program.
Here’s one way to print out messages on the Atari. (See Program 7-2.)

If youlook at Appendix B you will see that there are hundreds of
freeze-dried ML modules sitting in BASIC. (The maps included in
this book are for VIC, PET, Atari, and Commodore 64. Appendix B
contains information on how to obtain additional maps for Apple and
Atari.)

It can be intimidating at first, but disassembling some of these
routines is a good way to discover new techniques and to see how
professional ML programs are constructed. Study of your computer’s
BASIC is worth the effort, and it’s something you can do for yourself.
From time to time, books are published which go into great detail
about each BASIC routine. They, too, are often worth studying.

Borrowing From BASIC 7

000Z= ON1¥LS
2002= 400N

*ANO SN1d SI HIONAT ALON) !

(ZJO0AOWNWOD) ¢

ONOT °S¥YV¥YHD OT SI 9NIdLS ¢

ONIYLS IXAL SIHI HIOLS
(XZANI Q7I0H TIIM)
(3a0o #ddNOS ILN4ALNO)

[T T

¥00Z= &LYVLS
4000= HLONA‘]

NE*
s&Ly
doo71 dANd
HLONET# XdD
ANI
LIILNIdd ¥SC
X‘ONI¥LS ¥a1 doo1
00s# XQ1 LY¥YLS
1]
(a@aas dsn d1d44v ¥od) !
1]
zaaas =a- LILNI¥d
1]
1T aas HLONET
,434na¥adns, x€° ONI¥LS
66§ Fa° JALNNOD
so-
000Z$ v4*

NOISH¥AA d1ddY R® FJOAOWWOD ¢

06TO
08TO
0LTO
09TO
0STO
0%TO
0€TO
0CTO
0TTO
00TO
0600
0800
0L00
0900

0S00
ovo0
0€00
0200
0TOO

¢ddd= LILNId4
S500= ¥YALNNOD

= HEIIA TIELNT]

44
0¢

Sy
(A4
0s

Sd
g0

za
00
00

0S
(4}
SS

SSYJdANd
09 ~LT0T
04 -ST02
03 —-€T10¢
80 -CT0¢
0Z -400¢
6d —-2002
0¥ -¥Y00¢
S -600¢2
SS -900¢C
St —-¢€00¢C
€S =-000¢

*1-L weddoud

95

7 Borrowing From BASIC

0090= ODNIYLS ¥090= ILIVLS P¥94= LIINIYd

q090= 4001 g000= HIONHAT GG00= ¥ALNNOD
~—= :ET1IJ 1d9NT ---
SSYdaNd
NA * 0020
s1d 0610 09 ~dT90
doo1 INg 08TO od 00 -DTI90
dILNAODx dWD 0LTO 6S SO -¥T90
HIONAT# va4l 09TO0 g0 6¥ -8T90
dALNNODx ONI 0S10 6S 94 ~9T190
LIINI¥d dsC 0¥I0 94 Y 0Z —~€T190
X'ONI¥LS va1d 0€10 90 00 69 —-0T90
JAILNNOD# Kan dooT 0210 GS 0¥ ~d090
(39¥d owdz ad9a ANY) !¢ dIINNODx YIS 0TITO GS S8 -2090
00# van IdYLS 0010 00 6Y¥ -¥090
! 0600
(19vav) ¢ tv¥9ds =g LILNIdd 0800
£ 0L00
ONOT °*S¥VHD 0T SI 9NIdLS ¢ 11 aa* HIONH7T 0900
7S -6090

S¥ 0S5 SS -9090
¥¥ 7S S¥ -€090

ONIJdLS ILXHL SIHL IY0oLs ¢ ,¥93d4nqadadns, Xx49° ONI¥LS 0G00 0SS SS €S —-0090
(XZANI qQTOoH 11IM) !¢ GG6$ da* JALNAOD 0900
(g0 #D¥n0sS 1ndrino) !¢ so* 0€00
00908 vd- 0Z00

NOISYIA I¥VIV ¢ 0100 ‘7-L weadoad

96

8
Building A Program

Using what we’ve learned so far, and adding a couple of new
techniques, let’s build a useful program. This example will
demonstrate many of the techniques we’ve discussed and will also
show some of the thought processes involved in writing ML.

Among the computer’s more impressive talents is searching. It
can run through a mass of information and find something very
quickly. We can write an ML routine which looks through any area of
memory to find matches with anything else. If your BASIC doesn't
have a FIND command or its equivalent, this could come in handy.
Based on an idea by Michael Erperstorfer published in COMPUTE!
Magazine, this ML program will report the line numbers of all the
matches it finds.

Safe Havens

Before we go through some typical ML program-building methods,
let’s clear up the ““where do I put it?** question. ML can't just be
dropped anywhere in memory. When the Simple Assembler asks
‘‘Starting Address?’’, you can’t give it any address you want to. RAM
is used in many ways. There is always the possibility that a BASIC
program might be residing in part of it (if you are combining ML with
a BASIC program). Or BASIC might use part of RAM to store arrays
or variables. During execution, these variables might write (POKE)
into the area that you placed your ML program, destroying it. Also,
the operating system, the disk operating system, cassette/disk loads,
printers — they all use parts of RAM for their activities. There are
other things going on in the computer beside your hard-won ML
program.

Obviously, you can’t put your ML into ROM addresses. That’s
impossible. Nothing can be POKEd into those addresses. The 64 is an
exception to this. You can POKE into ROM areas because a RAM
exists beneath the ROM. Refer to the Programmer’s Reference Guide or
see Jim Butterfield’s article on 64 architecture (COMPUTE! Magazine,
January 1983) for details.

Where to put ML? There are some fairly safe areas.

If you are using Applesoft in ROM, 768 to 1023 ($0300 to $03FF)
is safe. Atari’s page six, 1536 to 1791 ($0600 to $06FF) is good. The 64
and VIC’s cassette buffer at 828 to 1019 ($033C to $03FB) are good if
you are not LOADing or SAVEing from tape.

97

8 Building A Program

The PET/CBM makes provision for a second cassette unit. In
theory, it would be attached to the computer to allow you to update
files or make copies of programs from Cassette #1 to Cassette #2. In
practice, no one has mentioned finding a use for a second cassette
drive. It is just as easy to use a single cassette for anything that a
second cassette could do. As a result, the buffer (temporary holding
area) for bytes streaming in from the second cassette unit is very safe
indeed. No bytes ever flow in from the phantom unit so it is a perfect
place to put ML.

The “’storage problem’’ can be solved by knowing the free
zones, or creating space by changing the computer’s understanding
of the start or end of BASIC programs. When BASIC is running, it
will set up arrays and strings in RAM memory. Knowing where a
BASIC program ends is not enough. It will use additional RAM.
Sometimes it puts the strings just after the program itself. Sometimes
it builds them down from the ““top of memory,”” the highest RAM
address. Where are you going to hide your ML routine if you want to
use it along with a BASIC program? How are you going to keep
BASIC from overwriting the ML code?

Misleading The Computer

If the ML is a short program you can stash 1t into the safe areas listed
above. Because these safe areas are only a couple of hundred bytes
long, and because so many ML routines want to use that area, it can
become crowded. Worse yet, we’ve been putting the word ““safe’’ in
quotes because it just isn’t all that reliable. Apple uses the ‘’safe’’
place for high-res work, for example. The alternative is to deceive the
computer into thinking that its RAM is smaller than it really is. This is
the real solution.

Your ML will be truly safe if your computer doesn’t even suspect
the existence of set-aside RAM. It will leave the safe area alone
because you've told it that it has less RAM than it really does.
Nothing can overwrite your ML program after you misdirect your
computer’s operating system about the size of its RAM memory.
There are two bytes in zero page which tell the computer the highest
RAM address. You just change those bytes to point to a lower
address.

These crucial bytes are 55 and 56 1~ 7,38) in the 64 and VIC.
They are 52,53 ($34,35) in PET/CBM Upgrade and 4.0 BASIC. In the
PET with Original ROM BASIC, they are 134,135 ($86,87). The Apple
uses 115,116 ($73,74), and you lower the Top-of-BASIC pointer just as
you do in Commodore machines.

The Atari does something similar, but with the bottom of RAM. It
is easier with the Atari to store ML just below BASIC than above it.
Bump up the "“lomem*’ pointer to make some space for your ML. It's
convenient to start ML programs which are too long to fit into page

98

Building A Program 8

six ($0600-06FF) at $1F00 and then put this address into lomem. The
LSB and MSB are reversed, of course, as the 6502 requires its pointers
to be like this:

$02E7 00
$02E8 1F

$02E7,8 is Atari’s low memory pointer. You should set up this
pointer (LDA $00, STA $02E7, LDA #$1F, STA $02E8) as part of your
ML program. Following that pointer setup, JMP $A000 which
initializes BASIC. If you are not combining ML with a BASIC
program, these preliminary steps are not necessary.

Safe Atari zero page locations include $00-04, $CB-D0, $D4-D9
(if floating point numbers are not being used); $0400 (the printer and
cassette buffer), $0500-057F (free), $0580-05FF (if floating point and
the Editor are not being used), $0600-06FF (free) are also safe. No
other RAM from $0700 (Disk Operating System) to $9FFF or $BFFF is
protected from BASIC.

To repeat: address pointers such as these are stored in .SB, MSB
order. That is, the more significant byte comes second (this is the
reverse of normal, but the 6502 requires it of address pointers). For
example, $8000, divided between two bytes in a pointer, would look
like this:

0073 00
0074 80

As we mentioned earlier, this odd reversal is a peculiarity of the
6502 that you just have to get used to. Anyway, you can lower the
computer’s opinion of the top-of-RAM-memory, thereby making a
safe place for your ML, by changing the MSB. If you need one page
(256 bytes): POKE 116, PEEK (116)-1 (Apple). For four pages (1024
bytes) on the Upgrade and 4.0 PETs: POKE 53, PEEK (53) -4. Then
your BA or start of assembling could begin at (Top-of-RAM-255 or
Top-0f-RAM-1023, respectively. You don’t have to worry much about
the LSB here, It's usually zero. If not, take that into account when
planning where to begin storage of your object code.

Building The Code

Now we return to the subject at hand — building an ML program.
Some people find it easiest to mentally break a task down into several
smaller problems and then weave them into a complete program.
That’s how we’ll look at our search program. (See Program 8-1.)

For this exercise, we can follow the PET/CBM 4.0 BASIC version
to see how it is constructed. All the versions (except Atari’s) are
essentially the same, as we will see in a minute. The only differences
are in the locations in zero page where addresses are temporarily
stored, the “‘start-of-BASIC RAM*’ address, the routines to print a

8 Building A Program

810

o om om

“WY350dd FHL A0 ANI HHI LY LON H¥VY AM ‘WAHL ANIJI €810
L'NOAQ dM 41 °"S0¥dAZ g ¥0d MOAHD O INILNOYENS -0O- 810
... ! 1810
T+ITIx YLS 0810 gd 68 -89€0
T+018vd va71 0LT0 %0 TO a¥ -G9€0
ANIT DISvVg! T1Tx VYIS 0910 ve 68 -£9€£0
IXAN J0 ¥aa¥ 13! 1+0IsS¥d ¥a1 0ST0 %0 10 aA¥ -09¢g0
! 0%10
! 0€T10
*SYAILNIOd AZITVILINI -0- ¢ 1210
uuu ! 0210
so* 0TTO
d344nNd ALLIASSYD ANZ ¢ 09€0¢$ vd~ 0010
#ANIT INI¥G ! dLad¢ dq- ANITId 0L00
*¥VYHD ¥ INIdd ! zaads 3a- ILNI¥d 0900
00%0$ =Q“ oISvd 0500
9¢$ AA“ aNnod 0%00
¥Ya33Y 94 o¥dZ aIsnNn? od$ Fqa* 7127 0€00
NI dASHHI HI0LS! vdas =ag° 11T 0200
! 8100
*STEEYT WAHI ONIAID X9 SATEVINVA ANIJAQ -0- ¢ LT00

! 9100
NOISYIA 0°% LaAd ¢ STOO
OISVYd HONOYHI HOIYAS ¢ 0100

‘(UOIS4aA DISVE 0°F) Yo4eos | 3d *|-g Weadoug 8

Building A Program 8

ddLVT N0 QEINI¥A!?

49 OL SQHEEN
LI dSVD NI

O0L HEDVEOLS NI
ENIT 1nd

TZT NI LI HIOLS
GNV Ssd¥aav
ANIT LXIEN LID

"HTAWVS BHL OJ LI FIVAWOD NVD ANV HENIT LNEJYEND HHL NI
*¥YVHD IST HHI IV ONILNIOd NIEHIL HIV EM
:mZHJImeZIOBIMWBZHom:
LYHI OS JYELNIOd ENIT INIJIND HHL OL ¥ a4V IM

*# HNIT HHIL LNI¥d Ol GEEN ANV HOIVW V GNIdA

dM FSVYD NI dHEWAN ENIT INFWEND HEHI HIO0LS ANV
dNIT IXJIN HHIL OL S¥IILNIOd HIvaAdN OL INIINO¥dNS —-0-—

en tm emoen

o tmoem

21ISvd Ol NINIHEY!

°D0dd 40 QNI = 00 00

INIT 40 ANH ION

o~

4

TT T«

T+CNNOA x
X (117)

GNNOd »
X011

T+1Z2T7 %
X (317)

3 YA P
X (1T
005#

NO* 09
(11T

NO* 09
X (1t
005#

vaTl
¥iS
val
ANI
YIS
var<l
ANI
YIS
va+l
ANI
YIS
va+tl
AQ1

*NOILVWIOANI
ANV # ENIT HHL ISVd HIV FM

SL¥
aNd
vaTl
ANI
aNd
varl
AaT1

081V

NO 0D

L L e LS TSN Y TN

aNd

ANITaVIEE

08¢€0

0L€O
09¢€0
0S€0
0¥¢e0
0ee0
0z¢eo
0T€0
00€0
0620
0820
0L20
0920
6620
8620
LSTO
9670
6620
12°XAL
€620
2620
1620
0620
0vco
0€20
0z2z0
0tTZo
0020
06T0

vd

LE
b4

9¢
vd

ag
vd

od
vd
00

10
vd

90
vd
00

09
0a
1d
8D
0d
1d
ov

~€8¢0

-68¢€0
-L8€0
-98¢€0
-¥8¢0
—-Z8¢€0
-18¢€0
-dLEQ
-aLeo
-0LEQ
-VLi€0
-8LEO
-9L€0

-GLEOD
—€LED
-TLEO
-0L€0
-H¥9¢0
-09¢0
-¥9¢€0

101

8 Building A Program

NO HANILNOD EM HYHIHM 09% OL dn MOvd dWOr daNY 06S £ L1S0
INIT OL HONOYHL T1IVd AM ‘O¥HZ ANIA-ANIT ¥ FA¥0JEd ! 9150
HOLVWSIW ¥ ANId EM JI *dATdWVS SAXIAANI X °LEDEVI ! STS0
d0 MDOVAL Sd3EM X “HOIVW ID3J¥Ed V¥ SI #¥EHL 31 H3S ! $1S0
oL (INIT INTHEND) IIAOYVI EHI ANY (0 ANIT) HTIIWYS ! €180
dHL HLO® NI ¥ELDOVAVHD HOVE IV X001 Ol INIINO¥ENS -0- ¢ ZIS0
... ! 1150
4007 aWr 0IS0 €0 Y6 DOV -pveEo0
HO¥VES AANIINOD ¢ON !¢ ANI 0050 80 -€VEO0
ONI¥IS TETOHM MDHHD ¢éSTEX ¢ AWYS Odsg 06%0 70 04 -TY€O
E9VHD dTdWVYS IST SY aWYS ¢ 9401SvVeE dWD 08%0 %0 90 @D -36€0
GIHSIN1A INIT = o¥dAZ ! ANITTdOoLS OmEd 0LY0 21 04 -D06€0
X' (111) wan dood 09%0 ¥d T1d -Y6€0
00s% AqQ1 1S90 00 OV -86€0
! 0S¥%0
*ILXHlL S,ANIT D1Svd L 6v¥0
LNEFEEND HHL J0 *¥VHD AGNZ HHI NI HOIVW Y d04 MDOHHD ! 8%%0
ANV JHINAOD uwAu AHL FSIVI EM ‘HDOIVW I,NOG °SIVHD VA 2°41]
IJST Jd1 ,*dWYS, aITIVD ANIINOYENS HHI NI NOSI¥YdHWOD ! 9%bo
ONI¥IS 1103 ¥ OL HAOW EM ‘HOIVW SUIALOVIVHD IST ! GHh0
gHL A1 "0 ENIT LV ONI¥LS HTdWYS NI ¥FIDVIVHD IST 2 470]
LSNIVOV ENIT OISVd NI dALOVIVHD LST MDOHEHD NHIHL ANV ! €¥vo0
(¢AAHSINIA SI ANIT) O¥EZ ¥0d MOIHD O& ANILNO¥YENS -O- m Zvvo
uuu {1960
T+I11« YIS 0v¥vo0 dd S8 -96€0
00$# oav 0c¥o0 00 69 -¥6€0
(ANIT ILXEIN I0 !¢ T+311x ¥aQ1 0CZ¥%0 dd GY -Z6€0
aNv # ENIT 1svd) !¢ T11x YIS 0T%0 ¥d 68 -06€0
IXAL DISVd 40 I¥y¥d ¢ y0s# Dav 00%0 $0 69 -E8€0
IST Ol QIVMIOd FTAOW !¢ elife) 06€0 81 -d8E0

102

Building A Program 8

ANVTId ¥V LNI¥dd EM NIHL

“YIdWNN ENIT DISvd

"ENIT LXIN HHL

aviad ol Aavidyd IdD Ol
YIINIOd ENIT LNIIIND
OL ¥YHILNIOd SSHEIAAY
INIT LXEN ¥HIASNVIL

"HYIO0Ud HHL J0 dOOT NIVW EHL NI
*O¥HEZ HTHNOd WYIDOUd-I0-ANIF
dHL ¥O0d MDEHD HHI HLIM ILJVLS FHI OL MDVE dWNCL NIHL
097 ENIT LV OSNIIJVIS

LN0JYdNS &LSVYT HHL SI SIHI

*NEHYOS NO NOILISOd ¥0SdNd
LXEN EHI LV dF9RAN FHI SLNI¥d ENILNOY WOY HHL ANV
LE'9€S NI AT¥OLS ¥IEWAN HTHI SHEIVI LI LJIOSOEDIW NI
¥ I00 INI¥d OL 3AN1Lno¥dns -o-

ANITAVIEY
T+11 T~
T+712 1«

1T
12 Tx

L T Y T TN

LA0YdNS HHL NI GEAVS @M YEINIOA INIT IXIEN,

JEILNIOd 4ENIT ILNHIIND.,

HOLVW ON
dUVdHWOD ANNILINOD

ILNI¥d OS SON¥E ANI'T

LADIVL

Ol HFTdWYS HIVJWOD

SENIT LNIJEND FHL NI

dWr
Yis
¥a1l
V&S
¥a+l

dHI HLIM
AOV1ddd OL ANIINOYENS -0-

n em dn em em

ANITdOLS

Sm osm th va sa Sm sm en

LNOINI¥d ¥SC ILDod3dad
H d001 dWr
! AIYAWOD OHd
X (1T1) dWo
H Lodgddad OHd
X*9+01Isvd va'1
ANI
! XNI TIVANOD
! 00$# Xxa1 qAWYS
4
SHHOLVW ¥YHD IST d0d4 HNINOOT !

SG90
G890
€590
2590
1690
04990
0¥90
0€90
0290
0T90
8090
L0390
9090
S090
¥090
€090
2090
1090
0090
0640
08S0
0LSO
0960
0SS0
ovso
0€90
0240
6150
8190

€0

€0

¥0

%9
a4
ad
vd
od

SD
V6
Sd
vd
LO
90

00

ob
S8
Qv
S8
Qv

0¢
ob
0d
1a
0d
ad
80
8d
(A4

=2o0¢t0
-00¢€0
—-dde0
-0d¢€0
-vde0

—-Ld9€0
—-pde0
-Zd¢0
-0d¢0
-dNED
-gvy¢€o0
-VVYED
-6VYeE0
-LYEO

103

8 Building A Program

¥de0= HNITdOLS LYE0= HWYS

G0t 0= LNOLNIAd ¢Gdd= INI¥d
LE€0= 1D3d¥dd V6e0= 4001
¥d00= 111 9L¢0= NO°0D
GLE0= aNF 6VYE0= HIVAWOD
NF *
SLd
S# NEEMIEG IDVLS ¢ ILNI¥d ¥Sr
MNVYTId ¥ INI¥d ¢ 0Zs# vatl

(L€'9¢$) .aNnod, NI ‘!
aNnNod SANTIVA THI WOd3 dIEWNN EINIT vV !
SILNI¥d ENILOOY Wo¥ ! INIT1d dSC INOINIY

*SHHOLVW HFJOW ANIJA ANV dOO0T NIVW ZHL
HLIM NO d0NILNOD OL 0T9 HENIT OJ NINLIY ANV HADVdS

[T

d

am s em

00L0
2690
1690
0690
0890
0,90
2990
1990

¥9¢0= ANITIAQVHY

d.30= ENIT4
2d00= 'I1C1
9¢€00= aNnod
00¥0= DISvVd
- ¥IId THEV¥T ---
09 —-@d¢eo
44 20 0Z -VD¢€0
0Z 6Y¥ —-8D0¢£0
4> dL 02 -SD€0

0990
8590
LS90
9690

104

Building A Program 8

character and to print a line number, and the RAM where it’s safe to
store the ML program itself. In other words, change the defined
variables between lines 20 and 100 in Program 8-1 and you can use the
program on another computer.

We will build our ML program in pieces and then tie them all
together at the end. The first phase, as always, is the initialization.
We set up the variables and fill in the pointers. Lines 20 and 30 define
two, two-byte zero page pointers. L1L is going to point at the address
of the BASIC line we are currently searching through. L2L points to
the starting address of the line following it.

Microsoft BASIC stores four important bytes just prior to the
start of the code in a BASIC line. Take a look at Figure 8-1. The first
two bytes contain the address of the next line in the BASIC program.
The second two bytes hold the line number. The end of a BASIC line
is signaled by a zero. Zero does not stand for anything in the ASCII
code or for any BASIC command. If there are three zeros in a row,
this means that we have located the ““top,”’ the end of the BASIC
program. (The structure of Atari BASIC is significantly different. See
Figure 8-2.)

But back to our examination of the ML program. In line 40 is a
definition of the zero page location which holds a two-byte number
that Microsoft BASIC looks at when it is going to print a line number
on the screen. We will want to store line numbers in this location as
we come upon them during the execution of our ML search program.
Each line number will temporarily sit waiting in case a match is
found. If a match is found, the program will JSR to the BASIC ROM
routine we're calling “’PLINE,’” as defined in line 70. It will need the
““current line number’’ to print to the screen.

Line 50 establishes that BASIC RAM starts at $0400 and line 60
gives the address of the “/print the character in the accumulator”’
ROM routine. Line 100 says to put the object code into the PET’s (all
BASIC versions) second cassette buffer, a traditional "“safe’” RAM
area to store short ML programs. These safe areas are not used by
BASIC, the operating system (OS), or, generally, by monitors or
assemblers. If you are working with an assembler or monitor,
however, and keep finding that your object code has been messed up
— suspect that your ML creating program (the monitor or assembler)
is using part of your ’safe’’ place. They consider it safe too. If this
should happen, you'll have to find a better location.

Refer to Program 8-1 to follow the logic of constructing our
Microsoft search program The search is initiated by typing in line
zero followed by the item we want to locate. It might be that we are
interested in removing all REM statements from a program to shorten
it. We would type 0:REM and hit RETURN to enter this into the
BASIC program. Then we would start the search by a SYS to the

105

0c 0L

dNH HNI1 « T H . ¢ HNIT
00 00 00 08 00 ¥1 ¥0 11 00 TCT 6V 8% CC 66 00 VO ¥0 9000
L1%0 q0%0 00%0
ANH 0¢
~IH.LNIdd 01
spug JIsvd
aur jo pug jo yueyg

werloxg !
1

0[0{0{ ANI'TDISVAANT | # ANIT | ¥LLNIOd | 0|HAOD DISVE| # ANIT | ¥4LNIOJ | 0

8 Building A Program

1 1

MON o], pajurog sy SunjioN

*34n3dn.0§ s weudold Hisyg V °|-g 94n3ig4

2

i

8 Building A Program

- '
9L
LINLS ANC SNIXOL | 134S440 aNT IALS LST SNIMOL | 135440 INLS | 1HS440 INI'T | # HNIT

103 103
SANIJT INFWHLVIS-IIINW

0c 14S310 01
89/42¢ ANI1 JIINLS/ANT1 HANI1
0800 |9t|st]oofo]oowt [ofev]sp| 0] oz volvol oo vo

aNa 103 1 H &£ >
+ 1 | 5538
S5
SH1X49 SHILA4 01 ‘
AaNi 0T
JIdIWVX3 +JH,, LNTdd 01

Building A Program 8

starting address of the ML program. In the PET 4.0 version of
Program 8-1, it would be SYS 864 (hex $0360).

By entering the “’sample’’ string or command into the BASIC
program as line zero, we solve two problems. First, if it is a string, 1t
will be stored as the ASCII code for that string, just as BASIC stores
strings. If it is a keyword like REM, 1t will be translated into the
““tokenized,’’ one-byte representation of the keyword, just as BASIC
stores keywords. The second problem this solves is that our sample is
located in a known area of RAM. By looking at Figure 8-1, you can tell
that the sample’s starting address is always the start of BASIC plus
six. In Program 8-1 that means 0406 (see line 550).

Set Up The Pointers

We will have to get the address of the next line in the BASIC program
we are searching. And then we need to store it while we look through
the current line. The way that BASIC lines are arranged, we come
upon the link to the next line’s address and the line number before
we see any BASIC code itself. Therefore, the first order of business is
to put the address of the next line into L1L. Lines 150 through 180
take the link found in start-of-BASIC RAM (plus one) and move it to
the storage pointer “L1L."’

Next, lines 190 to 250 check to see if we have reached the end of
the BASIC program. It would be the end if we had found two zeros in
arow as the pointer to the next line’s address. If it 1s the end, the RTS
sends us back to BASIC mode.

The subroutine in lines 260 through 440 saves the pointer to the
following line’s address and also the current line number. Note the
double-byte addition in lines 390-440. Recall that we CLC before any
addition. If adding four to the LSB (line 400) results in a carry, we
want to be sure that the MSB goes up by one during the add-with-
carry in line 430. It might seem to make no sense to add a zero in that
line. What’s the point? The addition is with carry; in other words, if
the carry flag has been set up by the addition of four to the LSB in line
400, then the MSB will go up by one. The carry will make this
happen.

First Characters

It’s better to just compare the first character in a word against each
byte in the searched memory than to try to compare the entire sample
word. If you are looking for MEM, you don’t want to stop at each byte
in memory and see if M-E-M starts there. Just look for M’s. When you
come upon a M, then go through the full string comparison. If line
490 finds a first-character match, it transfers the program to “SAME"’
(line 520) which will do the entire comparison. On the other hand, if
the routine starting at line 451 comes upon a zero (line 470), it knows
that the BASIC line has ended (they all end with zero). It then goes
down to “"STOPLINE"” (line 610) which puts the “'next line’’ address

109

8 Building A Program

pointer into the "“current line’” pointer and the whole process of
reading a new BASIC line begins anew.

If, however, a perfect match was found (line 560 found a zero at
the end of the 0:REM line, showing that we had come to the end of
the sample string) — we go to “"PERFECT’’ and it makes a JSR to print
out the line number (line 660). That subroutine bounces back (RTS) to
““STOPLINE’* which replaces the ““current line’” (L1L) pointer with
the “‘next line’” pomnter (L2L). Then we JMP back to "READLINE”
which, once again, pays very close attention to zeros to see if the
whole BASIC program has ended with double zeros. We have
returned to the start of the main loop of this ML program.

This sounds more complicated than it is. If you’ve followed
this so far, you can see that there is enormous flexibility in
constructing ML programs. If you want tc put the “STOPLINE”
segment earlier than the “"SAME"’ subroutine — go ahead. It is quite
common to see a structure like this:

INITIALIZATION
LDA #15
STA $83
MAIN LOOP
STARTJSR1
JSR2
JSR3
BEQ START (until some index runs out)
RTS (to BASIC)
SUBROUTINES
1
2 (each ends with RTS back to the MAIN LOOP)
3
DATA
Table 1
Table 2
Table 3

The Atari FIND Utility
The second source listing, Program 8-2, adds a FIND command to
Atari BASIC. You access it with the USR command. It is written to
assemble in page six (1536 or $0600) and is an example of a full-blown
assembly. You'll need the assembler/editor cartridge to type it in.
After you've entered it, enter *ASM’’ to assemble it into
memory. After it is finished, use the SAVE command to store the
object (executable ML) code on tape or disk. Use:

SAVE#C: >0600,067E for tape
SAVE#D:FIND.OBJ< 0600 067E for disk

110

Building A Program 8

You can then put the BASIC cartridge in and enter the machine
language with the BASIC loader program, or with the L command of
DOS.

Using FIND from BASIC is simple. Say you want to search a
master string, A$ for the substring “‘hello’’. If B$ contains ““hello”’,
the USR call would look like:

POS=USR (1536, ADR(A$),LEN(A$), ADR(B$),LEN(BS))

POS will contain the position of the match. It will be a memory
location within the ADRress of A$. To get the character position
within A$%, just use POS-ADR(A$) +1. If the substring (B$) is not
found, POS will be zero.

It's easy to add commands like this to Atari BASIC. Also see
’Getting The Most Out Of USR” in the November 1982 issue of
COMPUTE! Magazine (p. 100).

64, Apple, & VIC Versions

Versions of the search routine for the Commodore 64 and VIC-20
and the Apple II are provided as BASIC loader programs.
Remember from Chapter 2 that a loader is a BASIC program
which POKEs a machine language program (stored in DATA
statements) into memory. Once you have entered and run the
BASIC programs, you can examine the ML programs using a
disassembler. (See Appendix D.)

These versions are similar to the PET Version outlined in
Program 8-1. The characters to be searched for are typed in line 0.
To start the search in the 64 version (Program 8-3), type SYS
40800. Use CALL 768 to activate the Apple version (Program 8-4).
The VIC version (Program 8-5) is activated with SYS 828.

As your skills improve, you will likely begin to appreciate, and
finally embrace, the extraordinary freedom that ML confers on the
programmer. Learning it can seem fraught with obscurity and rules.
It can even look menacing. But there are flights you will soon be
taking through your computer. Work at it. Try things. Learn how to
find your errors. It’s not circular — there will be considerable
advances in your understanding. One day, you might be able to sit
down and say that you can combine BASIC with ML and do pretty
much anything you want to do with your machine.

m

8 Building A Program

appe dwal !
XaputT 380INn0g!
uanaay !

yabuat!?
pue!
ssaxppe yoaess!

aoeds yoaees!
Jo yaibua!
yoaees jo!
sSaIppPVY!

LAs=
9ds=
yas=
£€ds=
zas=

Tas=
pas=
408=

q08=
ansé=
D08=
g08=

pasds 103 sbed oasz ut

LN DA D DK L TN

TIavd
XdaNId
a4
XHANIS
YVHDLSYIA
NATANA
HANJA

TaNg

HNHTS
NA'IS
HAIAvs
TIAYS

sa1qeTIeA!

aTgeiedoTax Atsiatdwod
DIsSvd Taely 103
yosaeag bHurtaasqns

fu tu Sa Su tw fa S tm

PEED
X AN"
P1ED
PBED
P6l0
P8CHY
PLCO
XA
PSCo
ovZo
PETO
nTee
P12
] X A"
61O
810
PLTO
got1g
PST1g
Y10
PETO
PCT1o
110
P31o

LAGO
20069
yage
£age
2dpe

1agg
ety
d000

4006
asee
oJe]” 1)
g4000

‘7-8 weadoag

o
—
—

Building A Program 8

pus ad2anog ‘s1kg Ty! vid
TIAYS VIS

1ae1s aoanos ‘sikq oT! v'1d
HIGV¥S VIS

aJe1s 8o>anos ‘sakq ty! Y1d
23Xq 3unod! ¥'1d

aNId

joeas a8yl 33jo DIsyg KAq pessed!
ssntea syi HBuitind Agq yoaess syl 103!
sisasweaed syl dn siss uotixod sTylL!

B2oa3$ =x
(yoew ou IT P=) PUNOJF UOTITSO4
putaas yoaesas Jo yaibual
ssaJpp®e HPuTaIIs YoaIeas
putyoaesas 1Tnb o1 sasym
yoJaeas 1Jels 031 3J9aUM
(9€GT) A2TTTIN JO SS8IPPV:IANI
(a’o>'g'v'aNId)dsn=x!
1X3L putdidaNIdg:

I
.

uoTaelIusSuNOOp xelulks!
6ds= dOOTTaNd
8ds= HIAYL

o0 o8 or so o

S O Su S Sm On

X
a
9]
g
A4
d

0650
P850
PLSO
9950
53R
oYSo
PESH
XAY)
8150
0BG
pevo
o8V o
oLYO
Pov0
osv e
52744
PEVO
Y A4Y
P1ve
POV o
P6ED
P8ED
PLED
Potc@
PSEDd
PoveEDd

89
4068
89
0068
89
89

LBO0
S@90
Y9090
@90
1099
20390

PO0d

6dg9
8000

113

8 Building A Program

yabuay
yabuag
purtIas
putaas

pua

yosaeas

yoaeas

yoiess

yodoaess

3d0anos

14

DISVd 031 oixaz e uanisa asnl sm!
'punoly asasu sT Hbutaas aya JI!

*suTainox uostaedwop HbuTtIas
IInI © 01 1TX3 am
I921oeaeyd 1ASITI 8yl JI

LT T T

'puncy st
*SYOO0TA ¢

914&g-967 aa1T131us ybHnoayli 3yooTt!

SM

*butaas yoaess asyai jyo!

I91ovIeYydD ASITI aYya I0J buriooTt!
soeds yoaeas a8yl ybnoayli yoaeas!
*dooT utew 8yl ST STYL!

aMm

314&q
'31kq
'‘s1/kq
'a1kq

'aakq

ot!
Ty
oT!
Ty!

oT!

NHTANA

"TANA

HANa

TNUTS

HNATIS

YIS
¥id
1T 3Ioupl!
¥id
YiLS
¥ld
YiS
¥id
Y.1S
Yid
Y.LS

P¥80
PE8A
pT80
P189
Pe80
P6LO
P8LG
BLLD
POLO
PSLO
PvLO
PELD
PTLO
PILG
POLG
2690
P890
BLOD
p990
P599
Pvo0
PE2Y
XA
p19¢
P20

1ass
89

89
4068
89
pass
89
anss
89
4068

S190
v190

€199
1190
P1og
4090
agog
4899
Y999
8090

114

Building A Program 8

aser dn 1ag!
adou!

salk!

lauoq!

YOo0Tq axeN!
anutiluod!

ou!

sak!
JUyoi1evw © punod!

pus 108T9S¢

isairkq!
GGZ ueya ssaT!

uostaeduoo !
asat3y dn aas!

"INFTS

HOYSIXN
LIXH

HIavs

dOOTHOUVHES

dOOTAaNd

TANNOJ
JVHOLSY Id
X' (THAVS)

o#
dOO0TaNd

SSZ#

LIOCHS
HNYTS

YVHOLSY I
X' ("IANd)
2#

Yan
LIAOHS
aNd
IWg
Xda
ONI

(1Y

aNd
Xddo
ANI
aNNoOJALON
oad
dWO
vat
dOOTHDYVYAS
a1
YLS
CHOUVYHUS
va'l
HDYSLXN
oad
XaTtl

(2

Y.LS
va'l
AdTl

POTI
2601
280T
BLOT
29871
PSeT
ove 1
PEBT
XA
P1o1
Po01
2660
2860
BL6D
?960
PS60
oy 60
pee6d
XA
07160
PB60
2680
2880
2L.80
2980
2980

aosev

83gd
°209¢€

YO
0094

sd@da
6av¥o
80

L1p4d
¢aso
g01d

PRON
6ds8

dde¥

8104
409V

zass
4014
PN

6£9¢0

LESY
SE90
vE9D
A%

PEOD
4290
azcog

4290
6290
LTO@

G290
€290

1290

4199
atog

4190
6190
L1990

115

8 Building A Program

14
o

(pPuno3y yoiew OU JT yodaeas!
3yl SnuTlucd ued 3M 0Os) JYJVS Ul ssSsappe sya abueyd oar!
aueMm 1 ,U0p 8M 3DUTS ’‘sssappe Axeaodwsl v ssn sm!

Xapul putd! XAANTA
T#

XSput 8oanos!? XHANIS
X aaes! pad

ALS
Ad7
ALS
ALS

I
.

TaNnod

(Bbutals yoaess pue soeds yoaess)!
K1owsuw JO seoae Yioq SsSaddOe 01 pspsadu ST
14

J9asThax X swes syl adursS

tKxowsw uTt!

sieis1Hsa ,opnssd, omi asn 01 aaAey aMm!
Hfurtias yoaess syl Jjo I31DEIRYD pUODSS!

8yl yUa1tm Huraiaeas

‘yoaew TINJ ¢

? I0J 3YO8YD SM 3I9YM ST B8I8H!

4

e g S - ———— - —— . — G g - -~

punoy !
AfuTtaas ou! 1+484
=< gda
uainasa! a4
ueos ! CHOYVYHS

S
YiS
Y.LS
val

aNg

4
e

LIXH

PoET
PSET
PPeET
PEET
PCET
PTET
PRET
pect
#9821
pLTT
poCT
YA
AL
PeECT
XAAN
pict
PaCT
P61l
P8T1T
BLTT
PotI
BSTI
PYIT
PETT
@1t
PITT

oays
190Y
£avs
yavs

29
5adss8
yass
pP6Y

9dga

Y¥90
8v99
2v90
vvoo

£EV90
1¥o9
d€99
aeog

€90

116

Building A Program 8

'santreyd
snuTtiuod ‘salk! HDYSLNOD
caey os tenbas! X' (THAVL)

eaepdn! XIANIS

HIdvL

dpunoq obed aTH! ONIAIMS
20anos !

03 azedwod! XIANIS

auswsgdout ‘oul XHANIAa

u Ix91oevaeyd! X' ("Tang)

fuoalew-salk! ZaNnoJd

Zbua ased! NI TANA

XHANTA

‘ydDlrw © S$31DTPUT UYoTyMm!
‘HuTIIS Yoaeas ayl JO pua ayl yodeax i0!
uostaeduoo paTiey © 196 am TTaun axedwod 031 snNUTIUGD!

aM ’saydievui I330BIRYD YdERs

HIAvYL

RHIAVs

appe dwusa! TIAY L
031 Kdop! TIAVYS

uostaeduo)d ! @zZol

odg P1oT
dWO PeoT
ALS P6ST
ONIJIMS @861
ONI BLST
aANd P9ST
ANI PSS T
Ad1 PPST
ONI PEST
varl Y AN
odg @IST
Add PoST
a1 g6v1
! 98¥%T

BLYT

PovT

PS¥T

se buoT sV’ @b
! PEVT

HOYSLNOD @Z%1

P T

AR ooY1
var1 P6ET
AR P8ET
var BLET

6404
Laita
€ays

8d9H
2@eda

80
£ayrvy
oaod
401d
o104
Tayo
9ayv

8ds8
DOSY
LAss8
g046v

6999
L9990
5990

€990
1999
2990
4599
0599
Y590
8G90
9690
v590

2590
P590
av 90
o} 4°1)

117

8 Building A Program

ZANNOCA (31/.90 HOYSLNOD ¥590 LIXH dEog
TANNCd ¥ 90 dOOTHOUVHS LZ90 ZHOYVIS €799
LIOHS 6€£92@ aNId @990 dOOIANH 6d@@=
TIAVL LAP@= XdANId odep= pgdd pAeg=
YdYHDLSYIA ZApe= NETANd 1dge= HANd @dp@=
HNATS HO@g= TINJITS dD@go= HIAvVS DOpp=
aNd -
SLd
T+093 VIS
p# Oav
HIav¥s VYa1
gda V1S
TIAV¥YS Dav
g4 YA
o0
ZAaNno4d
oIsvd o021 g¥d utl sssappe uanasy:
tyoaeR!
(@T1qeaed0TI81) dWL FO! aANNoOdLON D04
soe1d uT pesn!? o} te)
pdd Ad1

dooT utew 031 uaInisy!

ONIdINS 9999
aNNOALON dzog
HOYSIXN 1299

HAAvlL gagg=
XdANIS €dge=
TANd AD@@=
TIAVS d9006=
P98T 4,90
geLT
P8LT go a.r9g9
PLLT sAG8 €9.99
PoLT 2069 6L90
PSLT ODSY LL9®
PvLT vasg8 SL9¢
PELT 8069 €.90
pTLT PASY TLO9@
PTLT 8T @L90
PALT
2691
#9891
BLOT
9991 adgge 9999
Ps9oT 81 d99@
gvo1 Yayy d499¢
PEST

118

Building A Program 8

Progr:

am 8-3. 64 Search BASIC Loader.

799 X=PEEK(55) : POKE55,X~1:REM PROTECT ML
800 FOR ADRES=40800TO040913:READ DATTA:
POKE ADRES,DATTA:NEXT ADRES

900
4096

4102
4108
4114
4120
4126
4132
4138
4144
4150
4156
4162
4168
4174
4180
4186
4192
4198
4204

PRINT"SYS40800 TO ACTIVATE"
DATA 162, 0, 173, 1, 8, 133
DATA 165, 173, 2, 8, 133, 166
DATA 160, 0, 177, 165, 208, 6
DATA 200, 177, 165, 208, 1, 96
DATA 160, O, 177, 165, 141, 167
DATA O, 200, 177, 165, 141, 168
DATA 0, 200, 177, 165, 133, 57
DATA 200, 177, 165, 133, 58, 165
DATA 165, 24, 105, 4, 133, 165
DATA 165, 166, 105, 0, 133, 166
DATA 160, O, 177, 165, 240, 28
DATA 205, 6, 8, 240, 4, 200
DATA 76, 158, 159, 162, 0,
DATA 200, 189, 6, 8, 240,
DATA 209, 165, 240, 245,
DATA 159, 32, 201, 159,
DATA 133, 165, 165, 168,
DATA 76, 108, 159, 32, 201,
DATA 169, 32, 32, 210, 255,

232
7
76, 158
165, 167

133, 166
189

96

READY.

Program 8-4. Apple Version.

700

768
774
780
786
792
798
804
810
816
822

FOR AD=768T0900: READ DA:POKE A
D,DA:NEXT AD
DATA169,76,141,245,3,169
DATAl6,141,246,3,169,3
DATA141,247,3,96,162,0
bATA173,1,8,133,1,173
DATA2,8,133,2,160,0
bATA177,1,208,6,200,177
DATAl,208,1,96,160,0
DATA177,1,133,3,200,177
DATA1,133,4,200,177,1
DATA133,117,200,177,1,133

119

8 Building A Program

828
834
840
846
852
858
864
870
876
882
888
894
900

DATAll18,165,1,24,105,4
DATA133,1,165,2,105,0
DATA133,2,160,0,177,1
DATA240,28,205,6,8,240
DATA4,200,76,76,3,162
DATA0,232,200,189,6,8
DATA240,7,209,1,240,245
DATA76,76,3,76,119,3
DATAl165,3,133,1,165,4
DATA133,2,76,28,3,169
DATA163,32,237,253,32,32

DATA237,169,160,32,237,253

DATA76,108,3

Program 8-5. VIC-20 Search BASIC Loader.

890

810
828
834
8440
846
852
858
864
870
876
882
888
894
9049
906
912
918
924
930
936

120

FOR ADRES=828T0941:READ DATTA:POKE ADR

ES,DATTA:NEXT ADRES
PRINT"SYS
DATA 162,
DATA 187,
DATA 1609,
DATA 200,
DATA 160,

g, 173,
173, 2,
6, 177, 187,
177, 187, 288,
e, 177, 187,
DATA @, 200, 177, 187,
DATA 9, 200, 177, 187,
DATA 200, 177, 187, 133,
DATA 187, 24, 105, 4,

DATA 165, 188, 105, 4,
DATA 160, @, 177, 187,
DATA 205, 6, 16, 240, 4,
DATA 76, 122, 3, 162, @,
DATA 200, 189, 6, 16,
DATA 209, 187, 240, 245,
DATA 3, 32, 165, 3, 165,
DATA 133, 187, 165, 191,
DATA 76, 72, 3, 32, 194,
DATA 169, 32, 32, 214,

1,
16,

le,

133,
208,

133,
133,
240,

828 TO ACTIVATE"

133

1,

141,
141,
133,

58,

200
232

243, 7

76,
190

133,
221
255,

188

96
190
191
57

165

187
188
28

122

188

96

9

ML Equivalents Of
BASIC Commands

What follows is a small dictionary, arranged alphabetically, of the
major BASIC commands. If you need to accomplish something in ML
— TAB for example — look it up in this chapter to see one way of
doing it in ML. Often, because ML is so much freer than BASIC, there
will be several ways to go about a given task. Of these choices, one
might work faster, one might take up less memory, and one might be
easier to program and understand. When faced with this choice, 1
have selected example routines for this chapter which are easier to
program and understand. At ML speeds, and with increasingly
inexpensive RAM memory available, it will be rare that you will need
to opt for velocity or memory efficiency.

CLR

In BASIC, this clears all variables. Its primary effect is to reset
pointers. It is a somewhat abbreviated form of NEW since it does not
"blank out’’ your program, as NEW does.

We might think of CLR, in ML, as the initulization routine which
erases (zeros) the memory locations you've set aside to hold your ML
flags, pointers, counters, etc. Before your program RUNs, you may
want to be sure that some of these ‘“variables’’ are set to zero. If they
are in different places in memory, you will need to zero them
individually:

2000 LDA #0

2002 STA 1990 (put zero into one of the “’variables’’)

2005 STA 1994 (continue putting zero into each byte which
needs to be initialized)

On the other hand, maybe you’ve got your tables, flags, etc., all
lined up together somewhere in a data table at the start or end of your
ML program. It’s a good 1dea. If your table is in one chunk of RAM,
say from 1985 to 1999, then you can use a loop to zero them out:

2000 LDA #0
2002 LDY #15 (Y will be the counter. There are 15 bytes to zero out in
this example.)

121

CONT

2004 STA 1985,Y (the lowest of the 15 bytes)

2007 DEY

2008 BNE 2004 (let Y count down to zero, BNEing until Y is zero,
then the Branch if Not Equal will let the program
fall through to the next instruction at 2010)

CONT

This word allows your program to pick up where it left off after a
STOP command (or after hitting the system break key). You might
want to look at the discussion of STOP, below. In ML, you can’t
usually get a running program to stop with the BREAK (or STOP)
key. If you like, you could write a subroutine which checks to see if a
particular key is being held down on the keyboard and, if it is, BRK:

3000 LDA 96 (or whatever your map says is the “’key currently
depressed’’ location for your machine)

3002 CMP # 13 (this is likely to be the RETURN key on your
machine, but you'll want CMP here to the value
that appears in the ‘‘currently pressed’’ byte for
the key you select as your STOP key. It could be
any key. If you want to use "’A"’ for your "‘stop”’
key, try CMP #65.)

3004 BNE 3007 (if it's not your target key, jump to RTS)

3006 BRK (if it 1 the target, BRK)

3007 RTS (back to the routine which called this subroutine)

The 6502 places the Program Counter (plus two) on the stack
after a BRK.

A close analogy to BASIC is the placement of BRK within ML
code for a STOP and then typing .G or GO or RUN — whatever your
monitor recognizes as the signal to start execution of an ML program
— to CONT.

DATA

In BASIC, DATA announces that the items following the word DATA
are to be considered preces of information (as opposed to being
thought of as parts of the program). That is, the program will
probably use this data, but the data are not BASIC commands. In ML,
such a zone of "‘non-program’’ is called a table. It is unique only in
that the program counter never starts trying to run through a table to
carry out instructions. Program control is never transferred to a table
since there are no meaningful instructions inside a table. Likewise,
BASIC shdes right over its DATA hnes

To keep things simple, tables of data are usually stored together
either below the program or above it in memory. (See Figure 9-1.)

122

DIM

From within the program, tables can be used to print messages
to the screen, update or examine flags, etc. If you disassemble your
BASIC in ROM, you'll find the words STOP, RUN, LIST, and so
forth, gathered together in a table. You can suspect a data table when
your disassembler starts giving lots of error messages. It cannot find
groups of meaningful opcodes within tables.

Figure 9-1. Typical ML program organization with data tables —
one at top or bottom of program.

DATA 4——— Bottom of Memory
INITIALIZATION |4——— Start Of ML Program

MAIN

LOOP

4— Subroutines

DATA

DIM

With its automatic string handling, array management, and error
messages, BASIC makes life easy for the programmer. The price you
pay for this “"hand-holding’’ is that a program is slow when it’s RUN.
In ML, the DIMensioning of space in memory for variables is not
explicitly handled by the computer. You must make a note that you
are setting aside memory from 6000 to 6500, or whatever, to hold
variables. It helps to make a simple map of this *’dimensioned””
memory so you know where permanent strings, constants, variable
strings, and variables, flags, etc., are within the dimensioned zone.

A particular chunk of memory (where, and how much, isup to
you) is set aside, that’s all. You don’t write any instructions in ML to
set aside the memory. you just jot it down so you won't later use the
reserved space for some other purpose. Managing memory is left up
to you. It's not difficult, but it 1s your responsibility.

123

END

END

There are several ways to make a graceful exit from ML programs.
You can look for the ““warm start’” address on your particular
computer (in the map of its BASIC locations) and JMP to that address.
Or you can go to the “cold start’” address. This results in the
computer resetting itself as if you had turned the power off and then
back on again.

If you went into the ML from BASIC (with a USR or SYS), you
can return to BASIC with an RTS. Recall that every JSR matches up
with its own RTS. Every time you use a JSR, it shoves its “"return
here’’ address onto the top of the stack. If the computer finds another
JSR (before any RTS’s), it will shove another return address on top of
the first one. So, after two JRS’s, the stack contains two return
addresses. When the first RTS is encountered, the top return address
is lifted from the stack and put into the program counter so that the
program returns control to the current instruction following the most
recent JSR.

When the next RTS is encountered, it pulls s appropriate return
(waiting for it on the stack) and so on. The effect of a SYS or USR
from BASIC is like a JSR from within ML. The return address to the
correct spot within BASIC is put on the stack. In this way, if you are
within ML and there is an RTS (without any preceding JSR), what’s
on the stack had better be a return-to-BASIC address left there by SYS
or USR when you first went into ML.

Another way to END is to put a BRK in your ML code. This
drops you into the machine’s monitor. Normaily, you put BRKs in
during program development and debugging. When the program is
finished, though, you would not want to make this ungraceful exit
any more than you would want to end a BASIC program with STOP.

In fact, many ML programs, if they stand alone and are not part
of alarger BASIC program, never END at all! They are an endless
loop. The main loop just keeps cycling over and over. A game will not
end until you turn off the power. After each game, you see the score
and are asked to press a key when you are ready for the next game.
Arcade games which cost a quarter will ask for another quarter, but
they don’tend. They go into “attract mode.”” The game graphics are
left running on screen to interest new customers.

AnML word processor will cycle through its main loop, waiting
for keys to be pressed, words to be written, format or disk
instructions to be given. Here, too, it is common to find that the word
processor takes over the machine, and you cannot stop it without
turning the computer off. Among other things, such an endless loop
protects software from being easily pirated. Since it takes control of
the machine, how is someone going to save it or examine it once it’s

124

FOR-NEXT

in RAM? Some such programs are "’auto-booting’’ in that they cannot
be loaded without starting themselves running.

BASIC, itself a massive ML program, also loops endlessly until
you power down. When a program is RUNning, all sorts of things are
happening. BASIC is an interpreter, which means that it must look up
each word (like INT) it comes across during a RUN (interpreting it, or
translating its meanings into machine-understandable JSRs). Then
BASIC executes the correct sequence of ML actions from its collection

of routines.
In contrast to BASIC RUNs, BASIC spends 99 percent of its time

waiting for you to program with 1t. This waitifig for you to press keys
isits "“endless’’ loop, a tight, small loop indeed. It would look like our
“which key is pressed?’’ routine.

2000 LDA 96 (or wherever your machine’s map shows that the
"“which key down’’ value is stored)

2002 CMP #255 (or whatever value is normally left in this address
by default when no key is being pressed)

2004 BEQ 2000 (if it says “‘no key down, "’ cycle back and wait for
one)

FOR-NEXT

Everyone has used “delay loops’” in BASIC (FOR T=1TO 1000:
NEXT T). These are small loops, sometimes called do-nothing

loops because nothing happens between the FOR and the NEXT
except the passage of time. When you need to let the user read
something on the screen, it’s sometimes easier just to use a delay loop
than to say “’When finished reading, press any key."’

In any case, you’ll need to use delay loops in ML just to slow ML
itself down. In a game, the ball can fly across the screen. It can get so
fast, in fact, that you can’t see it. It yust "“appears’’ when it bounces
off awall. And, of course, you’ll need to use loops in many other
situations. Loops of all kinds are fundamental programming
techniques.

In ML, you don't have that convenient little ccunter ("T’’ in the
BASIC FOR/NEXT example above) which decides when to stop the
loop. When T becomes 1000, go to the instructions beyond the word
NEXT. Again, you must set up and check your counter variable by
yourself.

If the loop is going to be smaller than 255 cycles, you can use the
Xregister as the counter (Y is saved for the very useful indirect indexed
addressing discussed in Chapter 4: LDA (96).Y). So, using X, you can
count to 200 by:

2000 LDX #200 (or $C8 hex)
2002 DEX
2003 BNE 2002

125

FOR-NEXT-STEP

For loops involving counters larger than 255, you’ll need to use
two bytes to count down, one going from 255 to zero and then
clicking (like a gear) the other (more significant) byte. To count to 512:

2000 LDA #2

2002 STA 0 (put the 2 into address zero, our MSB, Most
Significant Byte, counter)

2004 LDX #0 (set X to zero so that its first DEX will make it 255.
Further DEX's will count down again to zero,
when it will click the MSB down from 2 to 1 and
then finally 0)

2006 DEX

2007 BNE 2006

2009 DECO (click the number 1in address zero down 1)

2011 BNE 2006

Here we used the X register as the LSB (least significant byte)
and address zero as the MSB. We could use addresses zero and one to
hold the MSB/LSB if we wanted. This is commonly useful because
then address zero (or some available, two-byte space in zero page)
can be used for LDA (0),Y. You would print a message to the screen
using the combination of a zero page counter and LDA (zero page
address),Y.

FOR-NEXT-STEP

Here you would just increase your counter (usually X or Y) more than
once. To create FOR I=100 TO 1 STEP -2 you could use:

2000 LDX # 100
2002 DEX
2003 DEX
2004 BCC 2002

For larger numbers you create a counter which uses two bytes
working together to keep count of the events. Following our example
above for FOR-NEXT, we could translate FOR I1=512 TO 0 STEP -2:

2000 LDA #2

2002 STAO (this counts the MSB)

2004 LDX #0 (X counts the LSB)

2006 DEX

2007 DEX (here we click X down a second time, for -2)
2008 BNE 2006

2010 DECoO

2012 BNE 2006

126

GET

To count up, use the CoMPare instruction. FORI1=1TO 50
STEP 3:

2000 LDX #0
2002 INX

2003 INX

2004 INX

2005 CPX # 50
2007 BNE 2002

For larger STEP sizes, you can use a nested loop within the larger
one. This would avoid a whole slew of INX’s. To write the ML
equivalent of FOR I=1TO 50 STEP 10:

2000 LDX #0
2002 LDY #0
2004 INX

2005 INY

2006 CPY #10
2008 BNE 2004
2010 CPX #50
2012 BNE 2002

GET

Each computer model has its own “’“which key is being pressed?”’
address, where it holds the value of a character typed in from the
keyboard. To GET, you create a very small loop which just keeps
testing the first address in the buffer.

For Atari (in decimal):

2000 LDA 764 (“’which key pressed’’ decimal address. In
advanced assemblers, you could freely mix
decimal with hex, but not in the Simple
Assembler.)

2003 CMP #255 (when an FF value is in this address, it means
that no key is pressed)

2005 BEQ 2000 (keep going back and looking until there ts some

key pressed)

For PET (Upgrade and 4.0) (i decimal)

2000 LDA 151 (""which key pressed’’ decimal address)
2003 CMP #255
2005 BEQ 2000

For PET (Original):

2000 LDA 515 (“which key pressed’” decimal address)
2003 CMP #255
2005 BEQ 2000

127

GOSUB

For Apple II (hex):

2000 LDA C000 ("which key pressed”” — note: this is in hex)
2003 BPL 2000

2005 STA C010 (clears the keyboard)

2008 AND #7F (to give you the correct character value)

For VIC and 64 (decimal):

2000 LDA 197
2003 CMP #255
2008 BEQ 2000

The Commodore computers have a GET routine similar to the
one illustrated by these examples, which 1s built in at $FFE4 which
can be used for all ROM versions (all models of CBM) because it is a
fixed JMP table which does not change address when new BASIC
versions are introduced. See your BASIC’s map for Print a Byte to the
Screen, GET aByte, and other routines in the Commodore Jump
Tables. They start at $FFBD.

The examples above do not conform to PET BASIC’s GET. In
this version of BASIC, the computer does not "“wait’* for a character.
If no key is being held down during a GET, the computer moves on
and no GET takes place. In our ML GETs above, we loop until some
character is actually pressed.

For most programming purposes, though, you want to wait
until a key has actually been pressed. If your program is supposed to
fly around doing things until a key is pressed, you might use the
above routines without the loop structure. Just use a CMP to test for
the particular key that would stop the routine and branch the
program somew here else when a particular key 1s pressed. How you
utilize and construct a GET-type command in ML 1s up to you. You
can, with ML’s flexibility, make special adjustments to use the best
kind of GET for each different application.

GosuUB

This is nearly identical to BASIC in ML. Use JSR $NNNN and you
will go to a subroutine at address NNNN instead of a line number, as
in BASIC. (""NNNN'’ just means you can put any hex number in
there you want to.) Some assemblers allow you to give “"labels,”’
names to JSR to instead of addresses. The Simple Assembler does not
allow labels. You are responsible (as with DATA tables, variables,
etc.) for keeping a list on paper of your subroutine addresses and the
parameters mvolved.

Parameters are the number or numbers handed to a subroutine to
give it information it needs. Quite often, BASIC subroutines work
with the variables already established within the BASIC program. In
ML, though, managing variables is up to you. Subroutines are useful

128

GOTO

because they can perform tasks repeatedly without needing to be
programmed into the body of the program each time the task is to be
carried out. Beyond this, they can be generalized so that a single
subroutine can act in a variety of ways, depending upon the variable
(the parameter) which is passed to it.

A delay loop to slow up a program could be general in the sense
that the amount of delay is handed to the subroutine each time. The
delay can, in this way, be of differing durations, depending on what
it gets as a parameter from the main routine. Let’s say that we’ve
decided to use address zero to pass parameters to subroutines. We
could pass a delay of ““five’’ cycles of the loop by:

2000 LDA #5
The Main Program 2002 STA 0
2004 JSR 5000

The Subroutine 5000 DEC 0

5002 BEQ 5012 (if address zero has
counted all the way down
from five to zero, RTS back
to the Main Program)

5004 LDY #0

5006 DEY

5007 BNE 5006

5009 JMP 5000

5012 RTS

A delay which lasted twice as long as the above would merely
require a single change: 2000 LDA # 10.

GOTO

In ML, it's JMP. JMP is like JSR, except the address you leap away
from is not saved anywhere. You jump, but cannot use an RTS to find
your way back. A conditional branch would be CMP #0 BEQ 5000. The
condition of equality is tested by BEQ, Branch if EQual. BNE tests a
condition of inequality, Branch if Not Equal. Likewise, BCC (Branch if
Carry is Clear) and the rest of these branches are testing conditions
within the program.

GOTO and JMP do not depend on any conditions within the
program, so they are unconditional. The question arises, when you use
a GOTO: Why did you write a part of your program that you must
always (unconditionally) jump over? GOTO and JMP are sometimes
used to patch up a program, but, used without restraint, they can
make your program hard to understand later. Nevertheless, JMP can
many times be the best solution to a programming problem. In fact, it
is hard to imagine ML programming without it.

129

GOTO

One additional note about JMP: it makes a program non-
relocatable. If you later need to move your whole ML program to a
different part of memory, all the JMP’s (and JSR’s) need to be checked
to see if they are pointing to addresses which are no longer correct
(JMP or JSR into your BASIC ROM's will still be the same, but not
those which are targeted to addresses within the ML program). This
can be an important consideration if you are going to use an ML
subroutine in other programs where the locations might well differ.
Fully relocatable ML routines can be convenient if you like to program
by drawing from a personal collection of solved problems.

2000 JMP 2005
2003 LDY #3
2005 LDA #5

If you moved this little program up to 5000, everything would
survive intact and work correctly except the JMP 2005 at address 2000.
It would still say to jump to 2005, but it should say to jump to 5005,
after the move. You have to go through with a disassembly and check
for all these incorrect JMP’s. To make your programs more
"’relocatable,”” you can use a special trick with unconditional
branching which will move without needing to be fixed:

2000 LDY #0

2002 BEQ 2005 (since we just loaded Y with a zero, this Branch-
if-EQual-to-zero instruction will always be true
and will always cause a pseudo-JMP)

2004 NOP
2005 LDA #5

This works because we set the Z flag. Then, when BEQ tests the
zero flag, it will pass the test, it will find that flag *"up’’ and will
branch. If youload X, Y, or A with a zero, the zero flag goes up.

Various monitors and assemblers include a "“move it’’ routine,
which will take an ML program and relocate it somewhere else in
memory for you. On the Apple, you can go into the monitor and type
*5000 < 2000.2006M (although you will have to give the monitor these
numbers in hex). The first number is the target address. The second
and third are the start and end of the program you want to move.

On CBM computers, the built-in monitor (the VIC-20 and the
Original 2001 ROM set do not have a built-in monitor) does not have a
Move it command. However, it is easy to add a “'monitor extension”
program to the built-in monitor. Supermon and Micromon are such
extensions. The format for Moveit in Commodore machines is .T 2000
2006 5000 (start and end of the program to be moved, followed by the
target address). Again, these numbers must be in hex. The T stands
for transfer.

The Atari Assembler Editor Cartridge follows a convention
similar to Apple’s: M 5000 < 2000,2006.

130

INPUT

IF-THEN

This familiar and primary computing structure is accomplished in ML
with the combination of CMP-BNE or any other conditional branch:
BEQ, BCC, etc. Sometimes, the IF half isn’t even necessary. Here’s
how 1t would look:

2000 LDA 57 (what’s in address 577)

2002 CMP #15 (is it 15?)

2004 BEQ 2013 (IF it is, branch up to 2013)

2006 LDA #10 (or ELSE, put a 10 into address 57)
2008 STA 57

2010 JMP 2017 (and jump over the THEN part)
2013 LDA #20 (THEN, put a 20 into address 57)
2015 STA 57

2017 (continue with the program . . .)

Often, though, your flags are already set by an action, making
the CMP unnecessary. For example, if you want to branch to 2013 if
the number in address 57 is zero, just LDA 57 BEQ 2013. This is
because the act of loading the accumulator will affect the status
register flags. You don’t need to CMP #0 because the zero flag will be
set if a zero was just loaded into the accumulator. It won’t hurt
anything to use a CMP, but you’ll find many cases in ML
programming where you can shorten and simplify your coding. As
you gain experience, you will see these patterns and learn how and
what affects the status register flags.

INPUT

This is a series of GETs, echoed to the screen as they are typed in,
which end when the typist hits the RETURN key. The reason for the
echo (the symbol for each key typed is reproduced on the screen) is
that few people enjoy typing without seeing what they’ve typed. This
also allows for error correction using cursor control keys or DELETE
and INSERT keys. To handle all of these actions, an INPUT routine
must be fairly complicated. We don’t want, for example, the DELETE
to become a character within the string. We want it to immediately act
on the string being entered during the INPUT, to erase a mistake.
Our INPUT routine must be smart enough to know what to add
to the string and what keys are intended only to modify it. Here is the
basis for constructing your own ML INPUT. It simply receives a
character from the keyboard, stores it in the screen RAM cells, and
ends when the RETURN key is pressed. This version is for Upgrade
and 4.0 CBM/PETs and we’ll write it as a subroutine. That simply
means that when the 13 (ASCII for carriage return) is encountered,

131

LET

we’ll perform an RTS back to a point just following the main program
address which JSRed to our INPUT routine:

5000 LDY #0 (Y will act here as an offset for storing the
characters to the screen as they come in)

5002 LDA 158 (this is the “’'number of keys in the keyboard buffer”’
location. If it’s zero, nothing has been typed yet)

5004 BNE 5002 (so we go back to 5002)

5006 LDA 623 (get the character from the keyboard buffer)

5009 CMP #13 (is it a carriage return?)

5011 BNE 5014 (if not, continue)

5013 RTS (otherwise return to the main program)
5014 STA 32768,Y (echo it to the screen)

5017 INY

5018 LDA #0

5020 STA 158 (reset the ““number of keys’’ counter to zero)
5022 JMP 5002 (continue looking for the next key)

This INPUT could be made much larger and more complex. As it
stands, it will contain the string on the screen only. To save the string,
you would need to read it from screen RAM and store it elsewhere
where it will not be erased. Or, you could have it echo to the screen,
but (also using Y as the offset) store it into some safe location where
you are keeping string variables. The routine above does not make
provisions for DELETE or INSERT either. The great freedom you
have with ML is that you can redefine anything you want. You can
softkey: define a key’s meaning via software; have any key perform
any task. You might use the $ key to DELETE.

Along with this freedom goes the responsibility for organizing,
writing, and debugging these routines.

LET

Although this word is still available on most BASICs, it is a holdover
from the early days of computing. It is supposed to remind you that a
statement like LET NAME =NAME +4 is an assignment of a value to a
variable, not an algebraic equation. The two numbers on either side of
the ""equals’’ sign, in BASIC, are not intended to be equal in the
algebraic sense. Most people write NAME = NAME +4 without using
LET. However, the function of LET applies to ML as well as to BASIC:
we must assign values to variables.

In the Atari, VIC, and Apple, for example, where the address of
the screen RAM can change depending on how much memory is in
the computer, etc. — there has to be a place where we find out the
starting address of screen RAM. Likewise, a program will sometimes
require that you assign meanings to string variables, counters, and the
like. This can be part of the initialization process, the tasks performed

132

LET

before the real program, your main routine, gets started. Or it can
happen during the execution of the main loop. In either case, there
has to be an ML way to establish, to assign, variables. This also means
that you must have zones of memory set aside to hold these variables.

For strings, you can think of LET as the establishment of a
location in memory. In our INPUT example above, we might have
included an instruction which would have sent the characters from
the keyboard to a table of strings as well as echoing them to the
screen. If so, there would have to be a way of managing these strings.
For a discussion on the two most common ways of dealing with
strings in ML, see Chapter 6 under the subhead "’Dealing With
Strings.”’

In general, you will probably find that you program in ML using
somewhat fewer variables than in BASIC. There are three reasons for
this:

1. You will probably not write many programs in ML such as
data bases where you manipulate hundreds of names, addresses, etc.
It might be somewhat inefficient to create an entire data base
management program, an inventory program for example, in ML.
Keeping track of the variables would be a nightmare. An important
benefit of ML is its speed of execution, but a drawback is that it slows
programming down. So, for an inventory program, you could write
the bulk of the program in BASIC and simply attach ML routines for
sorting and searching tasks within the program.

2. Also, the variables in ML are often handled within a series of
instructions (not held elsewhere as BASIC variables are). FORI=1
TO 10: NEXT I becomes LDY #1, INY, CPY #10, BNE. Here, the
BASIC variable 1s counted for you and stored outside the body of the
program. The ML ‘“variable,”” though, is counted by the program
itself. ML has no interpreter which handles such things. If you wanta
loop, you must construct all of its components yourself.

3. In BASIC, it is tempting to assign values to variables at the
start of the program and then to refer to them later by their variable
names, as in: 10 BALL =79. Then, any time you want to PRINT the
BALL to the screen, you could say, PRINT CHR$(BALL). Alterna-
tively, you might define it this way in BASIC: 10 BALL$=""0"". In
either case, your program will later refer to the word BALL. In this
example we are assuming that the number 79 will place a ball
character on your screen.

In ML we are not free to use variable names except when using a
complicated, advanced assembler. With the Simple Assembler, you
will find it easter just to LDA #79, STA (screen position) each time.
Some people like to put the 79 into their zone of variables (that
arbitrary area of memory set up at the start of a program to hold
tables, counters, and important addresses). They can pull it out of
that zone whenever it’s needed. That is somewhat cumbersome,

133

LIST

though, and slower. You would LDA 1015, STA (screen position),
assuming you had put a 79 into this “‘ball’”’ address earlier.

Obviously a value like BALL will remain the same throughout a
program. A ball will look like a ball in your game, whatever else
happens. So, it’s not a true variable, it does not vary. It is constant. A
true variable must be located in your ““zone of variables,’” your
variable table. It cannot be part of the body of your program itself (as
in: LDA #79) because it will change. You don’t know when writing
your program what the variable will be. So you can’t use immediate
mode addressing because it might not be a #79. You have to LDA 1015
(or whatever) from within your table of variables.

Elsewhere in the program you have one or more STA 1015’s or
INC 1015’s or some other manipulation of this address which keeps
updating this variable. In effect, ML makes you responsible for
setting aside areas which are safe to hold variables. What's more, you
have to remember the addresses, and update the variables in those
addresses whenever necessary. This is why it is so useful tokeep a
piece of paper next to you when you are writing ML. The paper lists
the start and end addresses of the zone of variables, the table. You
also write down the specific address of each variable as you write
your program.

LIST

This is done via a disassembler. It will not have line numbers (though,
again, advanced assembler-disassembler packages do have line
numbers). Instead, you will see the address of each instruction in
memory. You can look over your work and debug it by working with
the disassembler, setting BRKs into problem areas, etc. See
Appendix D.

LOAD

The method of saving and loading an ML program varies from
computer to computer. Normally, you have several options which
caninclude loading: from within the monitor, from BASIC, or even
from an assembler. When you finish working on a program, or a
piece of a program, on the Simple Assmbler you will be given the
starting and ending addresses of your work. Using these, you can
save to tape or disk in the manner appropriate to your computer. To
LOAD, the simplest way is just to LOAD as if you were bringing in a
BASIC program. Unfortunately, this only works on Commodore
machines. You'll get your ML program, not a BASIC program, so it
won't start at the normal starting address for BASIC unless you wrote
and saved it at that address. You should type NEW after loading it,
however, to reset some pointers in the computer That will not NEW
out the ML program.

134

NEW

To save from within the monitor on Commodore machines:

.S “PROGRAM NAME",01, NNNN,NNNN* (for tape)
.L “PROGRAM NAME"",01 (for tape)

.§ “0:PROGRAM NAME"’,08, NNNN,NNNN* (for disk)
.L “0:PROGRAM NAME"*, 08 (for disk)

*You should add one to the hex number for the end of your
program or the SAVE will clip off the last byte. If your program exists
in RAM from $0300 to $0350, you save it like this: .S “PROGRAM
NAME"’,01,0300,0351.

On the Apple, you must BLOAD from disk. On the Atari, if you
have DOS you can use the "’L”” command from the DOS menu to
LOAD in an ML program. If you don't, you need to use a short
BASIC program that grabs in the bytes via a series of GETs:

10 OPEN#1,4,0,”'C:"’

20 GET#1,NN:GET#1,NN: REM DISCARD THE HEADER
30 GET#1,LO:GET#1,HI: REM START ADDRESS

40 START =L0O +256*HI

50 GET#1,LO:GET#1,HI: REM ENDING ADDRESS

60 FIN=LO +256*HI

70 TRAP 100

80 FORI=START TO FIN: GET#1,A: POKEI, A:NEXTI

90 GOTO 30

100 END

Note: This will not work correctly if the START and FIN
addresses overlap this BASIC program in memory. It would
thenloadin on top of itself.

NEW

In Microsoft BASIC, this has the effect of resetting some pointers
which make the machine think you are going to start over again. The
next program line you type in will be put at the ““start-of-a-BASIC-
program’’ area of memory. Some computers, the Atari for example,
even wash memory by filling it with zeros. There is no special
command in ML for NEWing an area of memory, though some
monitors have a "’fill memory’’ option which will fill a block of
memory as big as you want with whatever value you choose.

The reason that NEW is not found in ML is that you do not
always write your programs in the same area of memory (as you do in
BASIC), building up from some predictable address. You might have
a subroutine floating up in high memory, another way down low,
your table of variables just above the second subroutine, and your
main program in the middle. Or you might not. We’ve been using

135

ON GOSUB

2000 as our starting address for many of the examples in this book
and 5000 for subroutines, but this is entirely arbitrary.

To "NEW’’ in ML, just start assembling over the old program.
Alternatively, you could just turn the power off and then back on
again. This would, however, have the disadvantage of wiping out
your assembler along with your program.

ON GOSUB
In BASIC, you are expecting to test values from among a group of
numbers: 1,2,3,4,5 The value of X must fall within this narrow

range: ON X GOSUB 100, 200, 300 . . . (X must be 1 or 2 or 3 here). In
other words, you could not conveniently test for widely separated
values of X (18, 55, 220). Some languages feature an improved form of
ON GOSUB where you can test for any values. If your computer
were testing the temperature of your bathwater:

CASE

80 OF GOSUB HOT ENDOF

100 OF GOSUB VERYHOT ENDOF

120 OF GOSUB INTOLERABLE ENDOF
ENDCASE

ML permits you the greater freedom of the CASE structure.
Using CMP, you can perform a multiple branch test:

2000 LDA 150 (get a value, perhaps input from the keyboard)

2002 CMP # 80

2004 BNE 2009

2006 JSR 5000 (where you would print “‘hot,”” following your’
example of CASE)

2009 CMP # 100

2011 BNE 2016

2013 JSR 5020 (print ““very hot”’)

2016 CMP # 120

2018 BNE 2023

2020JSR 5030 (print “‘intolerable’’)

Since you are JSRing and then will be RTSing back to within the
multiple branch test above, you will have to be sure that the
subroutines up at 5000 do not change the value of the accumulator. If
the accumulator started out with a value of 80 and, somehow, the
subroutine at 5000 left a 100 in the accumulator, you would print
“hot”” and then also print "“very hot.”” One way around this would be
to put a zero into the accumulator before returning from each of the
subroutines (LDA #0). This assumes that none of your tests, none of
your cases, responds to a zero.

136

PRINT

ONGOTO

This 1s more common in ML than the ON GOSUB structure above. It
eliminates the need to worry about what is in the accumulator when
you return from the subroutines. Instead of RTSing back, you jump
back, following all the branch tests.

2000 LDA 150

2002 CMP # 80

2004 BNE 2009

2006 JMP 5000 (print "hot’’)

2009 CMP # 100

2011 BNE 2016

2013 JMP 5020 (print ““very hot”’)
2016 CMP # 120

2018 BNE 2023

2020 JMP 5030 {print ““intolerable’”)
2023 (all the subroutines JMP 2023 when they finish)

Instead of RTS, each of the subroutines will JMI? back to 2023,
which lets the program continue without accidentally "'triggering””
one of the other tests with something left in the accumulator during
the execution of one of the subroutines.

PRINT

You could print out a message in the following way:

2000 LDY #0

2002 LDA #72 (use whatever your computer’s screen POKE
value is for the letter "H"’)

2004 STA 32900,Y (an address on the screen)

2007 INY

2008 LDA #69 (the letter "“E’’)

2010 STA 32900,Y

2013 INY

2014 LDA #76 (the letter “’L”")

2016 STA 32900,

2019 INY

2020 LDA #76 (theletter ’L"")

2022 STA 32900,Y

2025 INY

2026 LDA #79 (theletter “O”’)

2028 STA 32900,Y

But this is clearly a cumbersome, memory-eating way to go
about it. In fact, 1t would be absurd to print out a long message this
way. The most common ML method involves putting message strings
into a data table and ending each message with a zero. Zero is never a

137

PRINT

printing character in computers (excepting Atari which cannot use
the technique described here) To print the ASCII number zero, you
use 48: LDA #48, STA 32900. So, zero itself can be used as a delimiter
to let the printing routine know that you’ve finished the message. In
a data table, we first put in the message "“hello’” Recall that you
should substitute your own computer’s screen POKE code:

100072 H

100169 E

100276 L

100376 L

100479 O

1005 0 (the delimiter, see Chapter 6)
100672 H

1007 731 (another message)

1008 0 (another delimiter)

Such a message table can be as long as you need; it holds all
your messages and they can be used again and again:

2000 LDY #0

2002 LDA 1000,Y

2005 BEQ 2012 (if the zero flag is set, it must mean that we’ve
reached the delimiter, so we branch out of this
printing routine)

2005 STA 39000,Y (put it on the screen)

2008 INY
2009 JMP 2002 (go back and get the next letter in the message)
2012 (continue with the program.)

Had we wanted to print ““HI,”” the only change necessary would
have been to put 1006 into the LDA at address 2003. To change the
location on the screen that the message starts printing, we could just
put some other address mto 2006. The message table, then, is just a
mass of words, separated by zeros, in RAM memory.

The easiest way to print to the screen, especially if your program
will be doing a lot of printing, is to create a subroutine and use some
bytes in zero page (addresses 0 to 255) to hold the address of the
message and the screen location you want to send it to. This is one
reason why hex numbers can be useful. To put an address into zero
page, you will need to put it nto two bytes. It’s too big to fit into one
byte. With two bytes together forming an address, the 6502 can
address any location from $0000 to the top $FFFF. So, if the message
is at decimal location 1000 like “"HELLO’" above, you should turn
1000 into a hex number. It’s $03E8.

Then you split the hex number in two. The left two dlglts $03,
are the MSB (the most sigruficant byte) and the right digits, $E8, make

138

PRINT

up the LSB (least significant byte). If you are going to put this target
address into zero page at 56 (decimal):

2000 LDA #232 (LSB, in decimal)
2002 STA 56

2004 LDA #3 (MSB)

2006 STA 57

2008 JSR 5000 (printout subroutine)

5000 LDY #0

5002 LDA (56),Y

5004 BEQ 5013 (if zero, return from subroutine)
5006 STA 32900,Y (to screen)

5009 INY

5010 JMP 5002

5013 RTS

One drawback to the subroutine 1s that it will always print any
messages to the same place on the screen. That 32900 (or whatever
you use there) is frozen into your subroutine. Solution? Use another
zero page pair of bytes to hold the screen address. Then, your calling
routine sets up the message address, as above, but also sets up the
screen address.

The Atari contains the address of the first byte of the screen
addresses 1n zero page for you at decimal 88 and 89. You don’t need
to set up a screen address byte pair on the Atari. We are using the
Apple II's low resolution screen for the examples in this
book, so you will want to put 0 and 4 into the LSB and MSB
respectively. The PET’s screen 1s always located in a particular place,
unlike the Atari, Apple, VIC, and 64 screen RAM locations which can
move, so you can put a $00 and an $80 into LSB and MSB for PET.
The following is in decimal:

2000 LDA #232 (LSB)

2002 STA 56 (set up message address)

2004 LDA #3 (MSB)

2006 STA 57

2008 LDA #0 (LSB for PET and Apple)

2010 STA 58 (we’ll just use the next two bytes in zero page
above our message address for the screen address)

2012LDA #4 (this is for Apple II; use 128 ($80) for PET)

2014 STA 59

2016 JSR 5000

5000 LDY #0
5002 LDA (56),Y
5004 BEQ 5013 (if zero, return from subroutine)

139

READ

5006 STA (58),Y (to screen)
5009 INY

5010 JMP 5002

5013 RTS

For Atari: 5006 STA (88),Y. You have less flexibility because you
will always be printing your messages to the first line on screen,
using address 88 as your screen storage target. To be able to put the
message anywhere on screen, Atari users will have to use some other
zero page for the screen address, as we did for Apple Il and PET
above. Atari users would have to keep track of the "cursor position”’
for themselves in that case.

READ

There is no reason for a reading of data in ML. Variables are not placed
into ML ""DATA statements.”” They are entered into a table when you
are programming. The purpose of READ, in BASIC, is to assign
variable names to raw data or to take a group of data and move it
somewhere, or to manipulate it into an array of variables. These
things are handled by you, not by the computer, in ML programming,.

If you need to access a piece of information, you set up the
addresses of the datum and the target address to which you are
moving it. See the ““PRINT’ routines above. As always, in ML you
are expected to keep track of the locations of your variables. You keep
a map of data locations, vectors, tables, and subroutine locations. A
pad of paper is always next to you as you program in ML. It seems as
if you would need many notes. In practice, an average program of say
1000 bytes could be mapped out and commented on, using only one
sheet.

REM

You do this on a pad of paper, too. If you want to comment or make
notes about your program — and it can be a necessary, valuable
explanation of what’s going on — you can disassemble some ML code
like a BASIC LISTing. If you have a printer, you can make notes on
the printed disassembly. If you don’t have a printer, make notes on
your pad to explain the purpose of each subroutine, the parameters 1t
expects to get, and the results or changes it causes when it operates.

Complex, large assemblers often permit comments within the
source code. As you program with them, you can include REMarks
by typing a semicolon, or parentheses, or some other signal to the
assembler to ignore the REMarks when it is assembling your
program. In these assemblers, you are working much closer to the
way you work in BASIC. Your remarks remain part of the source
program and can be listed out and studied.

140

RUN

RETURN

RTS works the same way that RETURN does in BASIC: it takes you
back to just after the JSR (GOSUB) that sent control of the program
away from the main program and into a subroutine. JSR pushes, onto
the stack, the address which immediately follows the JSR itself. That
address then sits on the stack, waiting until the next RTS 1s
encountered. When an RTS occurs, the address is pulled from the
stack and placed into the program counter. This has the effect of
transferring program control back to the instruction just after the JSR.

RUN

There are several ways to start an ML program. If you are taking off
into ML from BASIC, you just use SYS or USR or CALL. They act just
like JSR and will return control to BASIC, just like RETURN would,
when there is an unmatched RTS in the ML program. By unmatched
we mean the first RTS which is not part of a JSR/RTS pair. USR and
SYS and CALL can be used either in immediate mode (directly from the
keyboard) or from within a BASIC program as one of the BASIC
commangds.

USR is just like SYS and CALL except that you can “’send’’ values
from BASIC to ML by attaching them to the USR () within the
parentheses. In Microsoft BASIC (Apple, PET/CBM, etc.), you must
set up the location of your target ML program in special USR
addresses, before exiting BASIC via USR. For example, to ‘‘gosub’’ to
an ML routine located at $0360 (hex), you want to put a $60 (hex) into
address 1 and an 03 into address 2. The 03 is obvious, just POKE 2,3.
Atari goes from BASIC to ML via USR. The USR’s argument may
place several parameters on the stack along with the ““count,”’ the
number of parameters which were passed

The hex 60 means that you wouid multiply 16 x 6, since the
second column in hex is the *’16's”” column. So you would POKE 1,
96. Recall that we always set up ML addresses to be used by *’indirect
indexed addressing’’ (LDA (00), Y) by putting the LSB (least
significant byte) first. To set up 0360, then, you first separate the hex
number into 1ts two bytes, 03 60. Then you translate them into
decimal since we’re 1n BASIC when we use USR: 3 96. Then you
switch them so that they conform to the correct order for ML:

LSCI%/ MSB 96 3. Finally, you POKE them into memory locations 1
and 2.

If this seems rather complex, itis. In practice, Microsoft BASIC
users rarely use USR. The number which is “’passed’’ to ML from
within the parentheses is put into the floating point accumulator.
Following this you must JSR to FPINT, a BASIC ROM routine which
converts a floating point value into an integer that you could work

141

RUN

within ML. As we mentioned, working with floating point arithmetic
in ML is an arcane art. For most applications which must pass
information from BASIC to ML, it is far easier to use ordinary
““integer’’ numbers and just POKE them into some predetermined
ML variable zone that you've set aside and noted on your workpad.
Then just SYS to your ML routine, which will look into the set-aside,
POKEd area when it needs the values from BASIC.

In Atari BASIC, USR works in a more simplified and more
convenient way. For one thing, the target ML address is contained
within the argument of the USR command: USR (address). This
makes it nearly the exact parallel of BASIC's GOSUB. What's more,
USR passes values from BASIC by putting them on the stack as a two-
byte hex number. USR (address,X) does three things. 1. It sends
program control to the ML routine which starts at “’address.”” 2. It
pushes the number X onto the stack where it can be pulled out with
PLA’s. 3. Finally, it pushes the total number of passed values onto the
stack. In this case, one value, X, was passed to ML. All of these
actions are useful and make the Atari version of USR a more sensible
way of GOSUBing from BASIC to ML.

If you are not going between BASIC and ML, you can start
(RUN) your ML program from within your ““monitor.”’ The PET/CBM
and the Apple have built-in monitor programs in their ROM chips.
On the Atari, a monitor is available as part of a cartridge. On the
’Original’’ PET/CBM (sometimes called BASIC 2.0), there is no built-
in monitor. A cassette with a program called TIM (terminal interface
monitor) can be LOADed, though, and used in the same way that the
built-in versions are on later models. Neither the VIC nor the 64 has a
built-in monitor.

To enter “’monitor mode’’ (as opposed to the normal BASIC
mode), you can type SYS 1024 or SYS 4 on the PET/CBM. These
locations always contain a zero and, by “’landing’’ on a zero in ML,
you cause a BRK to take place. This displays the registers of your 6502
and prints a dot on the screen while waiting for your instructions to
the monitor. To enter the monitor on Apple II, type CALL -151 and
you will see an asterisk (instead of PET’s period) as your prompt.
From within Atari’s Assembler Cartridge, you would type BUG to
enter the equivalent of the Apple and PET monitor. The Atari will
print the word DEBUG and then the cursor will wait for your next
instruction.

To RUN an ML program, all five computers use the abbreviation
G to indicate “goto and run’’ the hex address which follows the G.
Unfortunately, the format of the ML RUN (G), as always, differs
between machines. To run a program which starts at address $2000:

Applell, you type: 2000G (8192 in decimal)
PET, VIC,64, youtype: G 2000
Atari, you type: G 2000

142

STOP

One other difference: the Apple I expects to encounter an
unmatched RTS to end the run and return control to the monitor. Put
another way, it will think that your ML program is a subroutine and
2000G causes 1t to JSR to the subroutine at address (in hex) 2000. The
Commodores and the Atari both look for a BRK instruction (00) to
throw them back into monitor mode.

SAVE

When you SAVE a BASIC program, the computer handles 1t
automatically. The starting address and the ending address of your
program are calculated for you. In ML, you must know the start and
end yourself and let the computer know. From the Apple Il monitor,
you type the starting and ending address of what you want saved,
and then ““W’’ for write:

2000.2010W (This is only for cassette and these commands are
in hex. These addresses are 8192.8208, in decimal.)
From BASIC to disk use:
BSAVE Name,A,L (A=address, L=length)
On the VIC, 64, and PET, the format for SAVE is similar, but
includes a filename:

.S ““PROGRAM NAME",01,2000,2010 (the 01 is the *’device
number’’ of the tape player)

To save to disk, you must change the device number to 08 and
start the filename with the number of the drive you are SAVEing to

.5 "“0:NAME"’,08,2000,2010

(Always add one to the finish’* address; the example
above saves from 2000 to 200F.)

With the Atari Assembler Cartridge, you:
SAVE#C:NAME < 2000,2010 (do this from the EDIT, not
DEBUG, mode). The NAME is not required with cassette.

To write Atari source code to cassette, type: SAVE#C. For disk,
type SAVE#D:FILENAME.EXT or use DOS.

STOP

BRK (or an RTS with no preceding JSR, on the Apple) throws you
back into the monitor mode after running an ML program. This is
most often used for debugging programs because you can set
“‘breakpoints’’ in the same way that you would use STOP to examine
variables when debugging a BASIC program.

143

ASC

String Handling
ASC

In BASIC, this will give you the number of the ASCII code which
stands for the character you are testing. ZASC(""A’’) will result in a 65
being displayed. There is never any need for this in ML. If you are
manipulating the character A in ML, you are using ASCII already. In
other words, the letter A 1s 65 in ML programming. If your computer
stores letters and other symbols in nonstandard ways (such as
Commodore character codes for lowercase, and Atari’s ATASCII),
you will need to write a special program to be able to translate to
standard ASCII if you are using a modem or some other peripheral
which uses ASCII. See your computer’s manual, the Atari BASIC
Reference Manual for example, for information on your computer’s
internal character code.

CHRS$

This is most useful in BASIC to let you use characters which cannot
be represented within normal strings, will not show up on your
screen, or cannot be typed from the keyboard. For example, if you
have a printer attached to your computer, you could "’send”’
CHR$(13) to it, and it would perform a carriage return. (The correct
numbers which accomplish various things sometimes differ, though
decimal 13 — an ASCII code standard — is nearly universally
recognized as carriage return.) Or, you could send the combination
CHR$(27)CHR$(8) and the printer would backspace.

Again, there is no real use for CHR$ within ML. If you want to
specify a carriage return, just LDA #13. In ML, you are not limited to
the character values which can appear on screen or within strings.
Any value can be dealt with directly.

The following string manipulation instructions are found in
Microsoft BASIC:

LEFTS

As usual in ML, you are in charge of manipulating data. Here’s one
way to extract a five-character-long “substring’’ from out of the left
side of a string as in the BASIC statement: LEFT$ (X$,5)

2000 LDY #5

2002 LDX #0 (use X as the offset for buffer storage)

2004 LDA 1000,Y (the location of X$)

2007 STA 4000,X (the “'buffer,”” or temporary storage area for
the substring)

2010 INX

2011 DEY

2012 BNE 2004

14

RIGHTS

LEN

In some cases, you will already know the length of a string in ML.
One of the ways to store and manipulate strings is to know
beforehand the length and address of a string. Then you could use
the subroutine given for LEFT$ above. More commonly, though, you
will store your strings with delimiters (zeros, except in Atari) at the
end of each string. To find out the length of a certain string;:

2000 LDY #0

2002 LDA 1000,Y (the address of the string you are testing)

2003 BEQ 2009 (remember, if you LDA a zero, the zero flag is set.
So you don’t really need to use a CMP #0 here to
test whether you've loaded the zero delimiter)

2005 INY

2006 BNE 2002 (we are not using a JMP here because we assume
that all your strings are less than 256 characters

long.)

2008 BRK (if we still haven’t found a zero after 256 INY’s, we
avoid an endless loop by just BRKing out of the
subroutine)

2009 DEY (the LENgth of the string is now in the Y register)

We had to DEY at the end because the final INY picked up the
zero delimiter. So, the true count of the LENgth of the string is one
less than Y shows, and we must DEY one time to make this
adjustment.

MIDS

To extract a substring which starts at the fourth character from within
the string and is five characters long (as in MID$(X$,4,5)):

2000 LDY #5 (the size of the substring we're after)

2002 LDX #0 (X is the offset for storage of the substring)

2004 LDA 1003,Y (to start at the fourth character from within the
X$ located at 1000, simply add three to that
address. Instead of starting our LDA,Y at
1000, skip to 1003. This is because the first
character is not in position one. Rather, it1s at
the zeroth position, at 1000.)

2007 STA 4000,X (the temporary buffer to hold the substring)

2010 INX

2011 DEY

2012 BNE 2004

RIGHTS

This, too, is complicated because normally we do not know the
LENgth of a given string. To find RIGHT$(X$,5) if X$ starts at 1000,

145

RIGHTS

we should find the LEN first and then move the substring to our
holding zone (buffer) at 4000:

2000 LDY #0

2002 LDX #0

2004 LDA 1000,Y

2007 BEQ 2013 (the delimiting zero is found, so we know LEN)
2009 INY

2010 JMP 2004 .

2013TYA (put LEN into A to subtract substring size from it)

2014 SEC (always set carry before subtraction)

2015 SBC #5 (subtract the size of the substring you want to
extract)

2017 TAY (put the offset back into Y, now adjusted to point to
five characters from the end of X$)

2018 LDA 1000,Y

2021 BEQ 2030 (we found the delimiter, so end)

2023 STA 4000,X

2026 INX

2027 DEY

2028 BNE 2018

2030 RTS

The above does not apply to Atari since it cannot use zero as a
delimiter.

SPC

This formatting instruction is similar to TAB. The difference is that
SPC(10) moves you ten spaces to the right from wherever the cursor
is on screen at the time. TAB(10) moves ten spaces from the left-hand
side of the screen. In other words, TAB always counts over from the
first column on any line; SPC counts from the cursor’s current
position.

In ML, you would just add the amount you want to SPC over. If
you were printing to the screen and wanted ten spaces between A

and B so it looked like this (A B), you could write:
2000 LDA #65 (A)
2002 STA 32768 (screen RAM address)
2005 LDA #66 (B)

2007 STA 32778 (you’ve added ten to the target address)
Alternatively, you could add ten to the Y offset-

2000 LDY #0

2002 LDA #65

2004 STA 32768,Y

2007 LDY #10 (add tentoY)

146

TAB

2009 LDA #66
2011 STA 32768,Y

If you are printing out many columns of numbers and need a
subroutine to correctly space your printout, you might want to use a
subroutine which will add ten to the Y offset each time you call the
subroutine:

5000 TYA
5001 CLC
5002 ADC #10
5004 TAY
5005 RTS

This subroutine directly adds ten to the Y register whenever you
JSR 5000. To really do this job, however, you should use a two-byte
register to keep track of the cursor.

TAB

Quite similar to SPC, except that you don’t add the offset from the
cursor position (whatever location you most recently printed).
Rather, TAB(X) moves ten over from the left side of the screen, or, if
you are using a printer, from the left margin on the piece of paper.
There is no particular reason to use TAB in ML. You have much more
direct control in ML over where characters are printed out.

147

Appendix A

ADC Add Memory To Accumulator With Carry
Status Flags N V4 C I D \Y%
L] L] L] []
Addressing Mnemonics Opcode Size
Mode In Bytes

Immediate ADC #Arg 69 2
Zero Page ADC Arg 65 2
Zero Page, X ADC Arg, X 75 2
Absolute ADC Arg 6D 3
Absolute, X ADC Arg, X 7D 3
Absolute, Y ADCArg, Y 79 3
(Indirect, X) ADC (Arg, X) 61 2
(Indirect), Y ADC (Arg), Y 71 2

AND *AND’’ Memory With Accumulator

Status Flags N V4 C I D \Y%

[] []
Addressing Mnemonics Opcode Size
Mode In Bytes

Immedhate AND # Arg 29 2
Zero Page AND Arg 25 2
Zero Page, X AND Arg.X 35 2
Absolute AND Arg 2D 3
Absolute, X AND Arg, X 3D 3
Absolute, Y AND Arg, Y 39 3
(Indirect, X) AND (Arg, X) 21 2
(Indirect), Y AND (Arg),Y 31 2

149

ASL

ASL Shift Left One Bit
Status Flags N Z C I D \Y%
L [] []
Addressing Mnemonics Opcode Size
Mode In Bytes
Accumulator ASL A 0A 1
Zero Page ASL Arg 06 2
Zero Page, X ASL Arg, X 16 2
Absolute ASL Arg OE 3
Absolute, X ASL Arg, X 1E 3
BCC Branch On Carry Clear
Status Flags N Z C [D \Y%
Addressing Mnemonics Opcode Size
Mode In Bytes
Relative BCC Arg 90 2
BCS Branch On Carry Set
Status Flags N V4 C I D \Y%
Addressing Mnemonics Opcode Size
Mode In Bytes
Relative BCS Arg BO 2

150

BNE

BEQ Branch On Zero
Status Flags N Z C I D \Y
Addressing Mnemonics Opcode Size
Mode In Bytes
Relative BEQ Arg FO 2
BIT Test Bits In Memory Against Accumulator
Status Flags N V4 C I D \%
L] [] []
Addressing Mnemonics Opcode Size
Mode In Bytes
ZeroPage BIT Arg 24 2
Absolute BIT Arg 2C 3
BMI Branch On Minus
Status Flags N V4 C I D \%
Addressing Mnemonics Opcode Size
Mode In Bytes
Relative BMI Arg 30 2
BNE Branch On Anything But Zero
Status Flags N z C I D \'
Addressing Mnemonics Opcode Size
Mode In Bytes
Relative BNE Arg DO 2

151

BPL

BPL Branch On Plus
Status Flags N Z C I D \%
Addressing Mnemonics Opcode Size
Mode In Bytes
Relative BPL Arg 10 2
BRK Break
Status Flags N Z C I D \%
Addressing Mnemonics Opcode Size
Mode In Bytes
Implied BRK 00 1
BVC Branch On Overflow Clear
Status Flags N Z C I D \%
Addressing Mnemonics Opcode Size
Mode In Bytes
Relative BVC Arg 50 2
BVS Branch On Overflow Set
Status Flags N Z C I D \%
Addressing Mnemonics Opcode Size
Mode In Bytes
Relative BVS Arg 70 2

152

CMP

CMP Compare Memory And Accumulator
Status Flags N Z C [D \%
[] L []
Addressing Mnemonics Opcode Size
Mode In Bytes
Immediate CMP # Arg 9 2
Zero Page CMP Arg C5 2
Zero Page, X CMP Arg, X D5 2
Absolute CMP Arg CDh 3
Absolute, X CMP Arg, X DD 3
Absolute, Y CMP Arg, Y D9 3
(Indirect, X) CMP (Arg, X) C1 2
(Indirect), Y CMP (Arg), Y D1 2
CPX Compare Memory Against X Register
Status Flags N Z C 1 D \%
L (] L
Addressing Mnemeonics Opcode Size
Mode In Bytes
Immediate CPX # Arg EO 2
Zero Page CPX Arg E4 2
Absolute CPX Arg EC 3
CPY Compare Memory Against Y Register
Status Flags N Z C 1 D \%
L L []
Addressing Mnemonics Opcode Size
Mode In Bytes
Immediate CPY # Arg o0 2
Zero Page CPY Arg C4 2
Absolute CPY Arg CC 3

154

CLV

CLC Clear Carry Flag
Status Flags N Z C 1 D \%
L]
Addressing Mnemonics Opcode Size
Mode In Bytes
Implied CLC 18 1
CLD Clear Decimal Mode
Status Flags N Z C I D \%
[]
Addressing Mnemonics Opcode Size
Mode In Bytes
Imphed CLD D8 1
CLI Clear Interrupt Disable Bit
Status Flags N Z C [D \%
[]
Addressing Mnemonics Opcode Size
Mode In Bytes
Implied CLI 58 1
CLV Clear Overflow Flag
Status Flags N Z C I D V
L]
Addressing Mnemonics Opcode Size
Mode In Bytes
Implied CLV B8 1

153

DEY

DEC Decrement Memory By One
Status Flags N Z C I D \Y
[] []
Addressing Mnemonics Opcode Size
Mode In Bytes
Zero Page DEC Arg Cé 2
Zero Page, X DEC Arg, X D6 2
Absolute DEC Arg CE 3
Absolute, X DEC Arg, X DE 3
DEX Decrement X Register By One
Status Flags N Z C I D A%
[] []
Addressing Mnemonics Opcode Size
Mode In Bytes
Implied DEX CA 1
DEY Decrement Y Register By One
Status Flags N Z C I D \Y
L []
Addressing Mnemonics Opcode Size
Mode In Bytes
Implied DEY 88 1

155

EOR

EOR Exclusive—Or Memory With Accumulator
Status Flags N Z C [D \%
L []
Addressing Mnemonics Opcode Size
Mode In Bytes
Immediate EOR # Arg 49 2
Zero Page EOR Arg 45 2
Zero Page, X EOR Arg, X 55 2
Absolute EOR Arg 4D 3
Absolute, X EOR Arg, X 5D 3
Absolute, Y EOR Arg, Y 59 3
(Indirect, X) EOR (Arg, X) 41 2
(Indirect), Y EOR (Arg), Y 51 2
INC Increment Memory By One
Status Flags N V4 C 1 D \%
[] L]
Addressing Mnemonics Opcode Size
Mode In Bytes
Zero Page INC Arg Eé6 2
Zero Page, X INC Arg, X Fé 2
Absolute INC Arg EE 3
Absolute, X INC Arg, X FE 3
INX Increment X Register By One
Status Flags N Z C 1 D \%
[]]
Addressing Mnemonics Opcode Size
Mode In Bytes
Implied INX E8 1

156

ISR

INY Increment Y Register By One
Status Flags N z C [D \Y
L L
Addressing Mnemonics Opcode Size
Mode In Bytes
Implied INY C8 1
JMP Jump
Status Flags N V4 C [D \Y%
Addressing Mnemonics Opcode Size
Mode In Bytes
Absolute JMP Arg 4C 3
Indirect JMP (Arg) 6C 3
JSR Jump To New Location, But Save Return Address
Status Flags N V4 C I D \Y%
Addressing Mnemonics Opcode Size
Mode In Bytes
Absolute JSR Arg 20 3

157

LDA

LDA Load Accumulator With Memory
Status Flags N Z C I D \Y%
[]]
Addressing Mnemonics Opcode Size
Mode In Bytes

Immediate LDA # Arg A9 2
Zero Page LDA Arg A5 2
Zero Page, X LDA Arg, X B5 2
Absolute LDA Arg AD 3
Absolute, X LDA Arg, X BD 3
Absolute, Y LDA Arg, Y B9 3
(Indirect, X) LDA (Arg, X) Al 2
(Indirect), Y LDA (Arg), Y B1 2

LDX Load X Register

Status Flags N z C [D \Y

[] L
Addressing Mnemonics Opcode Size
Maode In Bytes

Immediate LDX # Arg A2 2
Zero Page LDX Arg A6 2
ZeroPage, Y LDX Arg, Y Bé6 2
Absolute LDX Arg AE 3
Absolute, Y LDX Arg, Y BE 3

158

NOP

LDY Load Y Register
Status Flags N Z C [D \Y
L] L]
Addressing Mnemonics Opcode Size
Mode In Bytes

Immediate LDY # Arg A0 2
Zero Page LDY Arg A4 2
Zero Page, X LDY Arg, X B4 2
Absolute LDY Arg AC 3
Absolute, X LDY Arg, X BC 3

LSR Shift Right One Bit In Either Memory Or Accumulator

Status Flags N Z C I D \%
L [] L
Addressing Mnemonics Opcode Size
Mode In Bytes
Accumulator LSR A 4A 1
Zero Page LSR Arg 46 2
Zero Page, X LSR Arg, X 56 2
Absolute LSR Arg 4E 3
Absolute, X LSR Arg, X 5E 3
NOP No Operation
Status Flags N z C [D \Y
Addressing Mnemonics Opcode Size
Mode In Bytes
Implied NOP EA 1

159

ORA

ORA OR Memory With Accumulator
Status Flags N V4 I D A%
[] L]
Addressing Mnemonics Opcode Size
Mode In Bytes
Immediate ORA # Arg 09 2
Zero Page ORA Arg 05 2
Zero Page, X ORA Arg, X 15 2
Absolute ORA Arg 0D 3
Absolute, X ORA Arg, X 1D 3
Absolute, Y ORA Arg, Y 19 3
(Indirect, X) ORA (Arg, X) 01 2
(Indirect), Y ORA (Arg), Y 11 2
PHA Push Accumulator Onto The Stack
Status Flags N Z 1 D \%
Addressing Mnemonics Opcode Size
Mode In Bytes
Implied PHA 48 1
PHP Push Processor Status Onto The Stack
Status Flags N Z I D \Y
Addressing Mnemonics Opcode Size
Mode In Bytes
Implied PHP 08 1

160

ROL

PLA Pull Accumulator From The Stack
Status Flags N V4 C I D \%
[[]
Addressing Mnemonics Opcode Size
Mode In Bytes
Implied PLA 68 1
PLP Pull Processor Status From The Stack
Status Flags N z C I D \Y
From Stack
Addressing Mnemonics Opcode Size
Mode In Bytes
Implied PLP 28 1

ROL Rotate One Bit Left In Memory Or The Accumulator

Status Flags N z C I D A%
L] L] L]
Addressing Mnemonics Opcode Size
Mode In Bytes
Accumulator ROL A 2A 1
Zero Page ROL Arg 26 2
Zero Page, X ROL Arg, X 36 2
Absolute ROL Arg 2E 3
Absolute, X ROL Arg, X 3E 3

161

ROR

ROR Rotate One Bit Right In Memory Or The Accumulator
Status Flags N Z C I D \Y
L] L] []
Addressing Mnemonics Opcode Size
Mode In Bytes
Accumulator ROR A 6A 1
Zero Page ROR Arg 66 2
Zero Page, X ROR Arg, X 76 2
Absolute ROR Arg 6E 3
Absolute, X ROR Arg, X 7E 3
RTI Return From Interrupt
Status Flags N V4 C I D \Y%
From Stack
Addressing Mnemonics Opcode Size
Mode In Bytes
Implied RTI 40 1
RTS Return From Subroutine
Status Flags N V4 C I D \Y%
Addressing Mnemonics Opcode Size
Mode In Bytes
Implied RTS 60 1

162

SED

SBC Subtract Memory From Accumulator, With Borrow
Status Flags N V4 C I D \%
L] L] L] [
Addressing Mnemonics Opcode Size
Mode In Bytes
Immediate SBC # Arg E9 2
Zero Page SBC Arg E5 2
Zero Page, X SBC Arg, X F5 2
Absolute SBC Arg ED 3
Absolute, X SBC Arg, X FD 3
Absolute, Y SBC Arg, Y F9 3
(Indirect, X) SBC (Arg, X) E1l 2
(Indirect), Y SBC (Arg), Y F1 2
SEC Set Carry Flag
Status Flags N Z C I D \Y%
L]
Addressing Mnemonics Opcode Size
Mode : In Bytes
Implied SEC 38 1
SED Set Decimal Mode
Status Flags N Z C I D \%
L]
Addressing Mnemonics Opcode Size
Mode In Bytes
Imphed SED F8 1

163

SEI

SEI Set Interrupt Disable Status
Status Flags N Z C I D \Y%
L]
Addressing Mnemonics Opcode Size
Mode In Bytes
Implied SEI 78 1
STA Store Accumulator In Memory
Status Flags N 4 C I D \Y%
Addressing Mnemonics Opcode Size
Mode In Bytes
Zero Page STA Arg 85 2
Zero Page, X STA Arg, X 95 2
Absolute STA Arg 8D 3
Absolute, X STA Arg, X 9D 3
Absolute, Y STA Arg, Y 99 3
(Indirect, X) STA (Arg, X) 81 2
(Indirect), Y STA (Arg), Y 91 2
STX Store X Register In Memory
Status Flags N V4 C 1 D \%
Addressing Mnemonics Opcode Size
Mode In Bytes
Zero Page STX Arg 86 2
Zero Page, Y STX Arg, Y 96 2
Absolute STX Arg 8E 3

164

TSX

STY Store Y Register In Memory
Status Flags N Z C I D \%
Addressing Mnemonics Opcode Size
Mode In Bytes
Zero Page STY Arg 84 2
Zero Page, X STY Arg, X 94 2
Absolute STY Arg 8C 3
TAX Transfer Accumulator To X Register
Status Flags N 4 C I D \%
[] L]
Addressing Mnemonics Opcode Size
Mode In Bytes
Implied TAX AA 1
TAY Transfer Accumulator To Y Register
Status Flags N V4 C I D \%
L] []
Addressing Mnemonics Opcode Size
Mode In Bytes
Implied TAY A8 1
TSX Transfer Stack Pointer To X Register
Status Flags N Z C I D \%
L] L]
Addressing Mnemonics Opcode Size
Mode In Bytes
Implied TSX BA 1

165

TXA

TXA Transfer X Register To Accumulator
Status Flags N V4 C 1 D \%
L] [4
Addressing Mnemonics Opcode Size
Mode In Bytes
Implied TXA 8A 1
TXS Transfer X Register To Stack Pointer
Status Flags N V4 C I D \%
Addressing Mnemonics Opcode Size
Mode In Bytes
Implied TXS 9A 1
TYA Transfer Y Register To Accumulator
Status Flags N V4 C I D \Y
L] []
Addressing Mnemonics Opcode Size
Mode In Bytes
Implied TYA 98 1

166

Appendix B

These maps, primarily the work of Jim Butterfield, all originally appeared in COMPUTE/
Magazine (See the copyright page for references)

Map |I. PET Original And Upgrade BASIC.

ORIG

C357
C359
C38B
C3AC
C430
C433
C48D
C522
C553
C56A
C59A
C6B5
863
C9CE
C9D2
CA27
CA2D
CA49
CE1l
CE13
CE1C
D079
DOA7
D278
D679
Dé68D
D6C4
D73C
DSFD
D9B4
DA74
DB1B
DC9F
DCA9

UPGR

C355
C357
C389
C3AB
C439
C442
C495
C52C
C55D
C572
C5A7
C6C4
C873
C9DE
C9E2
CA1C
CA22
CA45
CDF8
CDFA
CE03
D069
D09A
D26D
D67B
D68F
D6C6
D773
D934
D9EE
DAAE
DB55
DCD9
DCE3

DESCRIPTION

?0UT OF MEMORY

Send BASIC error message

Warm start, BASIC

Crunch & msert line

Fix chaining & READY

Fix chaining

Crunch tokens

Find line 1n BASIC

Do NEW

Do CLR

Reset BASIC to start

Continue BASIC execution

Get fixed-point number from BASIC
Send Return, LF if in screen mode
Send Return, Linefeed

Print string

Print precomputed string

Print character

Check for comma

Check for specific character
‘SYNTAX ERROR’

Bump Variable Address by 2

Float to Fixed conversion

Fixed to Float conversion

Get byte to X reg

Evaluate String

Get two parameters

Add (from memory)

Multiply by memory location
Multiply by ten

Unpack memory variable to Accum #1
Completion of Fixed to Float conversion
Print fixed-point value

Print floating-point value

167

Appendix B

DCAF
E3EA
na
na
na
FOB6
FOBA
F12C
E7DE
Fl67
F17A
F17E
F187
F2C8
F2CD
F32A
F33F
na
F3DB
F3E5
F3FF
F411
F43F
F462
F495
F504
F52A
F52D
F579
F57B
F5AE
F64D
Fe667
F67D
F6E6
F78B
F7DC
F83B
F87F
F88A
F8B9
F8C1
F913
FBDC
FD1B

168

DCE9
E3D8
E775
E7A7
E7B6
FOB6
FOBA
F128
F156
F16F
F17F
F183
F18C
F2A9
F2AE
F301
F315
F322
F3E6
F3EF
F40A
F41D
F447
F466
F494
F4FD
F521
F524
F56E
F570
F5A6
F63C
F656
F66C
F6F0
F770
F7BC
F812
F855
F85E
F886
F883
F8E6
FB76
FC9B

Convert number to ASCII string
Print a character

Output byte as 2 hex digits

Input 2 hex digits to A

Input 1 hex digit to A

Send ‘talk’ to IEEE

Send ‘listen’ to IEEE

Send Secondary Address

Send canned message

Send character to IEEE

Send ‘untalk’

Send ‘unlisten’

Input from IEEE

Close logical file

Close logical file in A

Check for Stop key

Send message if Direct mode
LOAD subroutine

?’LOAD ERROR

Print READY & reset BASIC to start
Print SEARCHING . . .

Print file name

Get LOAD/SAVE type parameters
Open IEEE channel for output
Find specific tape header block
Get string

Openlogical file from input parameters
Open logical file

?FILE NOT FOUND, clear I'0O
Send error message

Find any tape header block

Get pointers for tape LOAD

Set tape buffer start address

Set cassette buffer pointers

Close IEEE channel

Set input device from logical file number
Set output device from LEN
PRESS PLAY. .; wait

Read tape to buffer

Read tape

Write tape from buffer

Write tape, leader length in A
Wait for I/O complete or Stop key
Reset tape I/O pointer

Set interrupt vector

Appendix B

FFCé6
FFC9
FFCC
FFCF
FFD2
FFE4

FFC6
FFC9
FFCC
FFCF
FFD2
FFE4

Set input device

Set output device

Restore default I/O devices
Input character

Output character

Get character

Map 2. Upgrade PET/CBM Map.

0000-0002
0003
0004
0005
0006
0007
0008
0009

000A

000B

000C

000D

000E
0011-0012
0013
0014-0015
0016-001E
001F-0020
0021-0022
0023-0027
0028-0029
002A-002B
002C-002D
002E-002F
0030-0031
0032-0033
0034-0035
0036-0037
0038-0039
003A-003B
003C-003D
003E-003F
0040-0041

0-2

=W

USR Jump instruction

Search character

Scan-between-quotes flag

BASIC input buffer pointer; #subscripts
Default DIM flag

Type: FF =string, 00=numeric

Type: 80=integer, 00 =floating point
DATA scan flag; LIST quote flag;

memory flag

Subscript flag; FNx flag

O0=input; 64=get; 152=read

ATN sign flag; comparison evaluation flag
input flag; suppress output if negative
current I/O device for prompt-suppress
BASIC integer address (for SYS, GOTO, etc.)
Temporary string descriptor stack pointer
Last temporary string vector

Stack of descriptors for temporary strings
Pointer for number transfer

Misc. number pointer

Product staging area for multiplication
Pointer: Start-of-BASIC memory

Pomnter: End-of-BASIC, Start-of-Variables
Pointer: End-of-Variables, Start-of-Arrays
Pointer. End-of-Arrays

Pointer: Bottom-of-strings (moving down)
Utility string pointer

Pointer: Limit of BASIC Memory

Current BASIC line number

Previous BASIC line number

Pointer to BASIC statement (for CONT)
Line number, current DATA line

Pointer to current DATA 1item

Input vector

169

Appendix B

0042-0043
0044-0045
0046-0047
0048

004A
004B-004C
004D-0050
0051-0053
0054-0058
0059-005D
005E-0063
0064

0065
0066-006B
006C
006D
006E-006F
0070-0087
0088-008C
008D-008F
0090-0091
0092-0093
0094-0095
0096

0097

0098
0099-009A
009B

009C
009D

009E

009F

00A0
00A1
00A3-00A4
00A5
00A6
00A7
00AS8
00A9
00AA
00AB
00AC
00AD
00AE

170

66-67
68-69
70-71
72

74
75-76
77-80
81-83
84-88
89-93
94-99
100

101
102-107
108

109
110-111
112-135
136-140
141-143
144-145
146-147
148-149
150

151

152
153-154
155

156

157

158

159

160

161
163-164
165

166

167

168

169

170

171

172

173

174

Current vanable name

Current variable address

Variable pointer for FOR/NEXT

Y save register; new-operator save
Comparison symbol] accumulator
Misc. numeric work area

Work area; garbage yardstick

Jump vector for functions

Misc. numeric storage area

Misc. numeric storage area
Accumulator#1:E,M,M,M,M, S
Series evaluation constant pointer
Accumulator hi-order propagation word
Accumulator #2

Sign comparison, primary vs. secondary
low-order rounding byte for Acc #1
Cassette buffer length/Series pointer
Subrtn: Get BASIC Char; 77,78 =pointer
RND storage and work area

Jiffy clock for T and TI$

Hardware interrupt vector

Break interrupt vector
NMlinterrupt vector

Status word ST

Which key depressed: 255 =no key
Shift key: 1if depressed

Correction clock

Keyswitch PIA: STOP and RVS flags
Timing constant buffer

Load =0, Verify =1

#characters in keyboard buffer
Screen reverse flag

IEEE-488 mode
End-of-line-for-input pointer

Cursor log (row, column)

PBD image for tape I/O

Key image

0=flashing cursor, else no cursor
Countdown for cursor timing
Character under cursor

Cursor blink flag

EOT bit received

Input from screen/input from keyboard
X save flag

How many open files

Appendix B

00AF 175
00BO 176
00B1 177
00B2 178
00B4 180
00B5 181
00B7 183
00B9 185
00BA 186
00BB 187
00BC 188
00BD 189
00BE 190
00BF 191
00Co 192
00C1 193
00C2 194
00C3 195
00C4-00C5 196-197
00Ceé 198

00C7-00C8 199-200
00C9-00CA 201-202
00CB-00CC 203-204

00CD 205
00CE 206
00CF 207
00D0 208
00D1 209
00D2 210
00D3 211
00D4 212
00D5 213
00D6-00D7 214-215
00D8 216
00D9 217
00DA-00DB 218-219
00DC 220
00DD 221
00DE 222
00DF 223
00E0-00F8 224-248
00F9 249
00FA 250

00FB-00FC 251-252
0100-010A 256-266

Input device, normally 0

Output CMD device, normally 3

Tape character parity

Byte received flag

Tape buffer character

Pointer in file name transfer

Serial bit count

Cycle counter

Countdown for tape write

Tape buffer #1 count

Tape buffer #2 count

Write leader count; Read pass 1/pass 2
Write new byte; Read error flag

Write start bit; Read bit seq error

Pass 1 error log pointer

Pass 2 error correction pointer

0=S5can; 1-15=Count; $40=Load; $80=End
Checksum

Pointer to screen line

Position of cursor on above line

Utility pointer: tape buffer, scrolling

Tape end address/end of current program
Tape timing constants

00 = direct cursor, else programmed cursor
Timer 1 enabled for tape read; 00 =disabled
EOT signal received from tape

Read character error

characters in file name

Current logical file number

Current secondary addrs, or R/W command
Current device number

Line length (40 or 80) for screen

Start of tape buffer, address

Line where cursor lives

Last key input; buffer checksum; bit buffer
File name pointer

Number of keyboard INSERTS outstanding
Write shift word/Receive input character

blocks remaining to write/read

Serial word buffer

Screen line table: hi order address & line wrap
Cassette #1 status switch

Cassette #2 status switch

Tape start address

Binary to ASCII conversion area

171

Appendix B

0100-013E
0100-01FF
0200-0250
0251-025A
025B-0264
0265-026E
026F-0278
027A-0339
033A-03F9
03FA-03FB
0400-7FFF
8000-8FFF
9000-BFFF
C000-EOF8
EQF9-E7FF
E810-E813
E820-E823
E840-E84F
FOOO-FFFF

256-318
256-511
512-592
593-602
603-612
613-622
623-632
634-825
826-1017
1018-1019
1024-32767
32768-36863
36864-49151
49152-57592
57593-59391
59408-59411
59424-59427
59456-59471
61440-65535

Tape read error log for correction
Processor stack area

BASIC input buffer

Logical file number table

Device number table

Secondary address, or R/W cmd, table
Keyboard input buffer

Tape #1 buffer

Tape #2 buffer

Vector for Machine Language Monitor
Available RAM including expansion
Video RAM

Available ROM expansion area
Microsoft BASIC interpreter
Keyboard, Screen, Interrupt programs
PIA1 - Keyboard I/O

PIA2 - IEEE-488 /O

VIA - 1/O and Timers

Reset, tape, diagnostic monitor

Map 3. PET/CBM 4.0 BASIC. Zero Page.

Hex
0000-0002
0003
0004
0005
0006
0007
0008
0009
0004
000B
ooocC
000D-~-000F
0010
0011-0012
0013-0015
0016-001E
001F-0022
0023-0027
0028-0029
002A-002B
002C~-002D
O002E-002F
0030-0031
0032-0033
0034-0035
0036-0037
0038-0039
003A-003B

172

Decimal
0-2

-
[RVe e 2o Mo R LN g UV

Description

USR jump

Search character

Scan-between-quotes flag

Input buffer pointer; # of subscripts
Default DIM flag

Type: FF=string, 0O0=numeric

Type: 80=integer, 00=floating point
Flag: DATA scan; LIST quote; memory
Subscript flag; FNX flag

0=INPUT; $40=GET; $98=READ

ATN sign/Comparison Evaluation flag
Disk status DS$ descriptor

Current 1/0 device for prompt-suppress
Integer value (for SYS, GOTO etc)
Pointers for descriptor stack
Descriptor stack(temp strings)

Utility pointer area

Product area for multiplication
Pointer: Start-of-Basaic

Pointer: Start-of-Variables

Pointer: Start-of-Arrays

Pointer: End-of-Arrays

Pointer: String-storage(moving down)
Utility string pointer

Pointer: Limit-of-memory

Current Basic line number
Previous Basic line number
Pointer: Basic statement for CONT

Appendix B

003C-003D
003E-D03F
0040-0041
0042-0043
0044-00u5
0046-0047
0048-0049
0044
004B-0050
0051-0053
0054-005D
005E
005F=-0062
0063
0064
0065
0066-006B
006C
006D
006 E~Q06F
0070-0087
0077-0078
0088-008C
008D-008F
0090-0091
0092-~0093
0094-0095
0096
0097
0098
0099-0094A
009B
009C
009D
009E
009F
0040
00A1
00A3-00A4
0045
0046
00A7
0048
0049
0044
00AB
00AC
00AD
00AE
00AF
00BO
00B1
00B2
00B3
00BY4
00B5
00B7
00B9

60-61 Current DATA line number
62-63 Current DATA address

64=-65 Input vector

66=-67 Current variable name

68-69 Current variable address
70-T1 Variable pointer for FOR/NEXT
72-73 Y-save; op-save; Basic pointer save
T4 Comparison symbol accumulator
75-80 Misc work area, pointers, ete
81-83 Jump vector for functions
84-93 Misc numeric work area

9y Accum#1: Exponent
95-98 Accum#1: Mantissa

99 Accum#1: Sign

100 Series evaluation constant pointer
101 Accumft1 hi-order (overflow)
102-107 Accum#2: Exponent, etec,

108 Sign comparison, Acc#t vs #2

106 Accum#1 lo-order (rounding)

110-111 Cassette buff len/Series pointer
112-135 CHRGET subroutine; get Basic char
119-120 Basic pointer (within subrtn)
136-140 Random number seed.

T41-143 Jiffy clock for TI and TI$
144-145 Hardware interrupt vector

146147 BRK interrupt vector

148-149 NMI ainterrupt vector

150 Status word ST

151 Which key down; 255=no key

152 Shift key: 1 1f depressed

153-154 Correction clock

155 Keyswitech PIA: STOP and RVS flags
156 Timing constant for tape

157 Load=0, Verify=1

158 Number of characters in keybd buffer
159 Screen reverse flag

160 IEEE output; 255=character pending
161 End-of-line-for-input pointer
163-164 Cursor log (row, column)

165 IEEE output buffer

166 Key 1image

167 O=flash cursor

168 Cursor timing countdown

169 Character under cursor

170 Cursor in blink phase

171 EOT received from tape

172 Input from screen/from keyboard
173 X save

174 How many open files

175 Input device, normally O

176 Output CMD device, normally 3

177 Tape character parity

178 Byte received flag

179 Logical Address temporary save

180 Tape buffer character; MLM command
181 File name pointer; MLM flag, counter
183 Serial bit count

185 Cycle counter

173

Appendix B

00BA 186 Tape writer countdown

00BB-00BC 187-188 Tape buffer pointers, #1 and #2
00BD 189 Write leader count; read passi/2
0OBE 190 Write new byte; read error flag
00BF 191 Write start bit; read bit seq error
00C0-00C1 192-193 Error log pointers, passi/2

00C2 194 0=Scan/1-15=Count/$40=Load/ $80=End
00C3 195 Write leader length; read checksum
00C4-00C5 196-197 Pointer to screen line

00C6 198 Position of cursor on above line

00CT7-00C8 199-200 Utility pointer: tape, scroll
00C9-00CA 201-202 Tape end addrs/End of current program
00CB-00CC 203-204 Tape timing constants

00CD 205 O=direct cursor, else programmed
00CE 206 Tape read timer 1 enabled

00CF 207 EOT received from tape

00DO 208 Read character error

00D1 209 # characters 1in file name

00D2 210 Current file logical address

00D3 211 Current file secondary addrs

00D4 212 Current file device number

00D5 213 Right-hand window or line margin
00D6-00D7 214-215 Pointer: Start of tape buffer

00D8 216 Line where cursor lives

00D9 217 Last key/checksum/misc.

00DA-00DB 218-219 File name pointer

00DC 220 Number of INSERTs outstanding

00DD 221 Write shift word/read character in
O00DE 222 Tape blocks remaining to write/read
00DF 223 Serial word buffer

00E0-00F8 224-248 (40-column) Screen line wrap table
00E0-00E1 22u4-225 (80-column) Top, bottom of window

00E2 226 (80-column) Left window margin
00E3 227 (80-column) Limit of keybd buffer
00EU 228 (80-column) Key repeat flag

00E5 229 (80-column) Repeat countdown

00E6 230 (80-column) New Key marker

00ET7 231 (80-column) Chime time

00E8 232 (80~column) HOME count

00E9-00EA 233-234 (80-column) Input vector
O0EB-00EC 235-236 (80=~column) Output vector
00F9-00FA 249-250 Cassette status, #1 and #2
00FB=-COFC 251-252 MLM pointer/Tape start address
00FD-00FE 253-254 MLM, DOS pointer, misc.
0100-0104 256-266 STR$ work area, MLM work
0100-013E 256-318 Tape read error log
0100-01FF 256-511 Processor stack

0200-0250 512-592 MLM work area; Input buffer
0251-0254A 593-602 File logical address table
025B-0264 603-612 File device number table
0265-026E 613-622 File secondary adds table
026F-0278 623-632 Keyboard input buffer
027A-0339 634-825 Tape#1 i1nput buffer
033A-03F9 826-1017 Tape#2 input buffer

0334 826 DOS character pointer
033B 827 DOS drive 1 flag
033C 828 DOS drive 2 flag
033D 829 DOS length/write flag

174

Appendix B

033E

033F-0340
0341

0342-0352
0353-0380
03EE-Q03F7
03FA-03FB
03FC

0400-TFFF
8000-83FF
8000-87FF
9000-AFFF
B0OOO-DFFF
EOOO-ETFF
E810-E813
E820-E823
E840-EBUF
E880-E881
FOOO-FFFF

830
831-832
833
834-850
851-896
1006-1015
1018-1019
1020
1024-32767
32768-33791
32768-34815
36864-45055
45056-57 343
57344-59391
59408~59411
59424-59427
59456-59471
59520-59521

ION)
DOs
DOs

syntax flags

disk ID

command string count

DOS file name buffer

DOS command string buffer
(80-column) Tab stop table
Monitor extension vector

IEEE timeout defeat

Available RAM including expansion
(40~column) Video RAM

(80~column) Video RAM

Available ROM expansion area
Basic, D0OS, Machine Lang Monitor
Screen, Keyboard, Interrupt programs
PIA 1 - Keyboard I/0

PIA 2 - IEEE-#88 I/O

VIA - I/0 and timers

(80~-column) CRT Controller

61440~65535 Reset, I/0 handlers, Tape routines

Map 4. PET/CBM 4.0 BASIC ROM Routines.

B0O00-B065
B066-B093
B0O94-BOB1
BOB2-B20C
B20D-B321
B322-B34F
B350-B392
B393-B39F
B3A0-B3CC
B3CD

B3FF-BU1E
B41F-B4B5
B4B6-BUE1
B4E2-BUFA
B4FB-B5A2
B5A43=-B5D1
B5D2

B5EC-B621
B622-B62F
B630-B6DD
B6DE-BT7 84
B785-B7B6
B7B7-B7C5
B7C6-BTED
B7EE-B807
B808-B812
B813-B82F
B830-B85C
B85D

Description
Action addresses for primary keywords
Action addresses for functions
Hierarchy and action addresses for operators
Table of Basic keywords
Basic messages, mostly error messages
Search the stack for FOR or GOSUB activity

Open up space in memory
Test: stack too deep?
Check available memory

Send canned error message, then:
Warm start; wait for Basic command
Handle new Basic line input
Rebuild chaining of Basic lines
Receive line from keyboard

Crunch keywords into Basic tokens
Search Basic for given line number
Perform NEW, and;

Perform CLR

Reset Basic execution to start
Perform LIST

Perform FOR

Execute Basic statement

Perform RESTORE

Perform STOP or END

Perform CONT

Perform RUN

Perform GOSUB

Perform GOTO

Perform RETURN, then:

175

Appendix B

B883-B890
B891

B894-B8B2
B8B3

B8C6-B8D5
B8D6-B8F5
B8F6~B92F
B930-BA87
BA88-BASD
BABE-BAA1
BAA2-BB1C
BB1D-BB39
BB3A-BB4B
BB4C-BBT79
BB7A-BBA3
BBA4-BBBD
BBBE-BBFU
BBF5-BCO1
BC02-BCFb6
BCF7-BD18
BD19-BD71
BD72-BD9T
BD98

BEE9

BEEF

BF00-BFOB
BF8C-COU6
Cou47-C085
C086-COB5
COB6-C11D
C11E-C12A
C12B-C1BF
c1co=-CaCt
cec8-ca2D8
CceD9-C2DC
C2DD-C2FB
C2FC-CL AT
C4a8

C4BC-C4C8
C4C9-CUCE
CU4CF-C4DB
C4DC-C509
C50A-C51C
C51D-C58D
C58E-C59D
C59E-C5AF
C5B0-C61C
C61D-C669
C66A-CTHE
CT4F-CT8B
C78C-C7BY
C7B5-C810

176

Perform DATA: skip statement
Scan for next Basic statement
Scan for next Basic line
Perform 1F, and perhaps:
Perform REM: skip line
Perform ON

Accept fixed-point number
Perform LET

Perform PRINT#

Perform CMD

Perform PRINT

Print string from memory
Print single format character
Handle bad input data
Perform GET

Perform INPUT#

Perform INPUT

Prompt and receive input
Perform READ

Canned Input error messages
Perform NEXT

Check type mismatch
Evaluate expression
Evaluate expression within parentheses
Check parenthesis, comma
Syntax error exit

Variable name setup

Set up function references
Perform OR, AND

Perform comparisons

Perform DIM

Search for variable

Create new variable

Setup array pointer

32768 in floating binary
Evaluate integer expression
Find or make array

Perform FRE, and:

Convert fixed-to-floating
Perform POS

Check not Direct

Perform DEF

Check FNx syntax

Evaluate FNx

Perform STR$

Do string vector

Scan, set up string
Allocate space for string
Garbage collection
Concatenate

Store string

Discard unwanted string

Appendix B

C811-C821
C822-C835
C836-C861
Cc862-C86¢C
C86D-C896
C897~C8B1
C8B2-C8B7
Cc8B8-C8CO
C8C1-C8DO
C8D1-C8E2
C8E3~(920
c921-Cc92C
C92D-C942
C943-C959
C95A-C962
C963-C9TE
C97F-C985
€986

€998-CATC
CATD-CAB3
CAB4-CABS
CAB9-CAF1
CAF2-CB1F
CB20

CB5E-CBC1
CBC2-~CBEC
CBED-CCO09
CCOA-cCIT
CC18-CC2E
CC2F-CcC33
CC34

CC3D

CCL45-CCDT
CCD8-CCFC
CCFD-CD31
CD32-CD41
CD42-CD50
CD51-CD60
CD61-CDEE
CD6F-CD8D
CD8E-CD90
CD91-CDDO
CDD1-CEO1
CEO2-CE28
CE29-CEB3
CEB4-CEES
CEE9-CEF8
CF78

CF7F-CF92
CF93-D0C6
DoC7-D107
D108

Clean descriptor stack
Perform CHR$

Perform LEFT$

Perform RIGHT$

Perform MID$

Pull string data

Perform LEN

Switch string to numeric
Perform ASC

Get byte parameter

Perform VAL

Get two parameters for POKE or WAIT
Convert floating-to-fixed
Perform PEEK

Perform POKE

Perform WAIT

Add 0.5

Perform subtraction
Perform addition
Complement accum#1
Overflow exit
Multiply-a-byte

Constants

Perform LOG

Perform multiplication
Unpack memory into accumi#2
Test & adjust accumulators
Handle overflow and underflow
Multiply by 10

10 1n floating binary
Divide by 10

Perform divide-by

Perform divide-into

Unpack memory into accumi#1
Pack accum#1 into memory
Move accum#2 to #1

Move accum#1 to #2

Round accum#?

Get accum#! sign

Perform SGN

Perform ABS

Compare accum#! to memory
Floating-~to-fixed

Perform INT

Convert string to floating-point
Get new ASCII digit
Constants

Print IN, then:

Print Basic line #

Convert floating-point to ASCII
Constants

Perform SQR

177

Appendix B

D112 Perform power function
D14B-D155 Perform negation

D156-D183 Constants

D184~-D1D6 Perform EXP

D1D7-D220 Series evaluation

D221~-D228 RND constants

D229~D281 Perform RND

D282 Perform COS

D289-D2D1 Perform SIN

D2D2-D2FD Perform TAN

D2FE~-D32B Constants

D32C~D35B Perform ATN

D35C-D398 Constants

D399-D3B5 CHRGET sub for zero page
D3B6~DU471 Basic cold start

D472-D716 Machine Language Monitor
D717-D7AB MLM subroutines

D7AC-D802 Perform RECORD

D803-D837 Disk parameter checks
D838-D872 Dummy disk control messages
D873-D919 Perform CATALOG or DIRECTORY
D91A~-D92E Output

D92F~D941 Find spare secondary address
D942-D9T76 Perform DOPEN

D977~D990 Perform APPEND

D991~-D9D1 Get disk status

D9D2~-DA06 Perform HEADER

DAOT7~-DA30 Perform DCLOSE

DA31-DA6Y Set up disk record

DA65-DATD Perform COLLECT

DATE-DAA6 Perform BACKUP

DAAT~DAC6 Perform COPY

DAC7-DAD3 Perform CONCAT

DADU~DBOC Insert command string values
DBOD-DB39 Perform DSAVE

DB3A-DB65 Perform DLOAD

DB66~DB98 Perform SCRATCH

DB99-DB9D Check Direct command
DB9E-DBD6 Query ARE YOU SURE?
DBD7~DBEO Print BAD DISK

DBE1~DBF9 Clear DS$ and ST

DBFA~DC67 Assemble disk command string
DC68-DE29 Parse Basic DOS command
DE2C~DE48 Get Device number

DE49-DEB6 Get file name

DE87~-DE9C Get small variable parameter
¥% Entry points only for EQOOO-ETFF #%

E00O Register/screen initialization
EOAT Input from keyboard

E116 Input from screen

E202 OQutput character

ELy2 Main Interrupt entry

178

Appendix B

EY455

E600

*%
FO00-FOD1
FoD2

FOD5

FOD7
F109-F142
F143-F150
F151-F16B
F16C~-F16F
F170-F184
F185-F192
F193-F19D
F19E-F1AD
F1AE-F1BF
F1C0-F204
F205-F214
F215-F265
F266-F2A1
Fe2A2
F2A6-F2C0
Fa2C1-FeDC
F2DD~F334
F335-F342
F343-F348
F349~F350
F351~F355
F356-F400
F401-F448
F449-F46C
FUeD-F47C
F4T7D-F4AY
F4A5-F4D2
FUD3-F4F5
FU4F6-F50C
F50D-F55F
F560-F5E4
F5E5-F618
F619-F674
F6T7B=-F694
F695-F6AA
F6AB-F6C2
F6C3-F6CB
F6CC-F6DC
F6DD-F767
F768-F7AE
FTAF-FTFD
F7FE-F84A
F84B~F856
F857-F879

Interrupt: clock, cursor, keyboard
Exit from Interrupt
* %

File
Send
Send
Send
Send

messages
'Talk?

'Listen!

IEEE command character
byte to IEEE

Send byte and clear ATN
Option: timeout or wait

DEVICE NOT PRESENT

Timeout on read, clear control lines
Send canned file message

Send byte, clear control lines
Send normal (deferred) IEEE char
Drop IEEE device

Input byte from IEEE

GET a byte

INPUT a byte

Output a byte

Abort files

Restore default I/0 devices
Find/setup file data

Perform CLOSE

Test STOP key

Action STOP key

Send message if Direct mode
Test 1f Direct mode

Program load subroutine
Perform LOAD

Print SEARCHING

Print LOADING or VERIFYING

Get Load/Save parameters

Send name to IEEE

Find specific tape header
Perform VERIFY

Get Open/Close parameters
Perform OPEN

Find any tape header

Write tape header

Get start/end addrs from header
Set buffer address

Set buffer start & end addrs
Perform SYS

Set tape write start & end
Perform SAVE

Update clock

Connect input device

Connect output device

Bump tape buffer pointer

Wait for PLAY

179

Appendix B

F87A-FB88B
F88C~F899
F89A

F8CB
F8EO-F92A
F92B-Fg934
F935-Fo44
F945-F975
F976-FA9B
FA9C-FBBA
FBBB-FBC3
FBC4-FBC8
FBC9-FBD7
FBD8-FBF3
FBFL-FC85
FC86-FCBF
FCCO-FCDA
FCDB-FCEA
FCEB~FCF8
FCF9-FDOA
FDOB~FD15
FD16-FDU4B
FD4C-FD5C
*¥% Jump ta
FF93-FF9E
FF9F~FFAA
FFAB-FFB6
FFB7-FFBC
FFBD

FFCO

FFC3

FFC6

FFC9

FFCC

FFCF

FFD2

FFD5

FFD8

FFDB

FFDE

FFE1

FFEY4

FFET

FFEA
FFFA-FFFF

180

Test cassette switch

Wait for RECORD

Initiate tape read
Initiate tape write

Common tape 1/0

Test I/0 complete

Test STOP key

Tape bit timing adjust
Read tape bits

Read tape characters

Reset tape read address
Flag error into ST

Reset counters for new byte
Write a bit to tape

Tape write

Write tape leader
Terminate tape; restore int
Set interrupt vector

Turn off tape motor
Checksum calculation
Advance load/save pointer
Power-on Reset

Table of interrupt vectors
ble: **
CONCAT,DOPEN,DCLOSE, RECORD
HEADER,COLLECT,BACKUP,COPY
APPEND,DSAVE,DLOAD,CATALOG
RENAME, SCRATCH

Get disk status

OPEN

CLOSE

Set anput device

Set output device

Restore default I/0 devices
INPUT a byte
Output a byte
LOAD

SAVE

VERIFY

SYS

Test stop key
GET byte

Abort all files
Update clock
Hard vectors:

NMI, Reset,

errupt

INT

Appendix B

»01seg-J0-34818 :493UTOo(
suotjeotrdI3Tnu JoJ e3aJde Jonpodd
eade Jajutod £317114Nn

~s8utags Adedodwsy JdoJ yoelg
403094 3utJdls dud@j gse-]

r1oeqs 8uqs Luedoduwq :J493UT0(
.r9NTeEA J33279UuT

~3e13 aqduwoud Q/I 3usaddn)

; 8e1y Tea9 uostuaedwosn, /udTs NIV
AQVIY=86$:1ID=0t$: LNINI=0

~3e1J xNJ4/3dTJosang

+8eT13y AJuwauw/ajonb [QIJ/uUe0S VIVd
+qutod 3utqeory=QQ ‘4adajur=QQ :3dAig
,otTdaunu=0Q ‘3utJdgs=gg :adf]
»3eTJ WIQ 31neJaq

r3daosqns gsJ93utod J3z73ing 3ndug
,X4T4IA=L ‘QVOT=0

~ 9ABS UWNTOO gVl

+3e13 sajonb-ueosg

+J3joedeyO Yydodesg

,J0909A qBOTJ-PIaXTY

» J0309A PIaXTJ-3e0T4

dun{ ygn

uotgdtaosaq

2200-g200
¥<200-9200
6200-2200
L200-6100
R100-1L100
9100
GL00-%100
€100
2L00
i100
0too
4000
3000
aooo
2000
g000
V000
6000
8000
1000
9000-5000
t000-£000

2000-0000
X9y

"SWOY DISVE puy a3ed 0497 DIA 'S dey

181

Appendix B

+*0198 ‘quauodxy :2#wndoy

A(MOTJIBA0) JBPJO=TY | #UNDOY
,Jd83utod 3uB3SUOD UOTI3EBNTRAS FITIJSQ
s U3Tg | 4wnody

A BSSTJURBK | fuUNody

» jJusuodxy :]pwnody

., B3JEe YJoMm OoTJawnu OSIH

, SuoIjouny JoJ JoqosA dunp

1999 ‘sJdajutod feade NJaoM OSIH
SMojernunooe ToquwAs uosigeduo)

,9ABS JdjuTlod oIseg {aaes~-do {saAes=-j
+»LXAN/404 JoJ J3juTod sTqerdep

~ SSaJdppe STqeIJeA juUaJsJn)

A, duweUu STqBIJIBA qUdJJN)

.# J0309A gqndug

+ S88Jppe YLVQ 3uaJddn)

sJd9qunu dUIT YIyqQ 3jusddn)

“/INO) JOJ jquawsgeqds orseg :J4a3UTO0(d
AJd9quinu 9UTT OTISedg SNOTIAad{

rdaquinu SUTIT oIsedg juadJdn)

, Kdowauw=-JOo=-qTWE] :J4934UTI0(

rJd3utod Butdys A3TTTIN

A(umMop 3uTAow)dadedols=-3uTJlg :J433UTO(d
» Sheddy-Jo-puy :J433UTO0(

» SAeddy-Jo-q4e3g :J493UT0(
»,S9TQRTIJIRA~JO=-3JB3S :JdB3UTOJ

0Li-601
7Ol
eot
col
L0L-86
L6
96-.8
98-h @8
£8-8.
Ll
9L-GL
hl=€L
2l-1L
0.-69
R9-L9
99-59
#9-£9
¢9=19
09-66S
RG- 1S
96-64
tG-€S
2s-1§
066t
8- Lt
Oh=Gh

4900-6900

8900

L1900

9900
5900-2900

1900
0900- 1500
9500-t500
£500-3400

awoo
d#00-d 400
Y#00-61%00
8%#00-Lt00
9%00-5%00
ttt00-£700
ct00- 1400
0%100-4£00
4£00-d£00
2€00-9£00
¥E£00-6£00
8€00-LE0O
9€00-5£00
1€00-££00
2€00-1£00
0£00-4200
J¢00~-a200

182

Appendix B

£3unod 31q/9314M 3adeq ‘umopiunoy
+3Unod 3104y

,38TJ I03/3unod 31q TeTJag

4*THH A00T) A3JTP

» P3034J0D BOT JJ3 g sseq dJ
+4833Inq Jeyo /80T Joddd | sseq dJ
,sT043u00 3nd3no Q=NNY /0Q$=3094I(Q

» 8eT3] pPaATaOau=-334g

r£q1aed Jajoedeyo ade]

£¢ AiTewdou ‘90TA3DP gWy 3andang

» 0 ATTewdou ‘301TA3p 3ndug

,+891TJ uado Auew Moy

) 4 9ABs J91sT139y

, PRATS034 1037 odel

; d930eJRYD DPOJIJIDISp TBRTJI3S

r3el] Jeyo paddagap :qndqno TeIJDg
r1=£3Td8p ‘Q=peoT

+adeq JoJ gqueqsuod BuTwIi]

+s8eTJ SAY pue JOoIS :VId UD3TIMSAIY
¢+ LS PJdoM snjejlg

,3NTeA Paas (NY

4 (U3J44ans UTy3Tm) Jajutod otseg
AJdeyd otTseq 3938 {autqnoJdqns IIHYH)
»Jdajutod S3TJI9Q/UDT JJnNQ 9319sse)
,(3UuTpunod) JapJo=-OT |#UNOOY

,e# SA L#00y ‘uostaeduwod ufrg

591
w9l
€9l
¢9l=091
66l
g6l
LGl
9gl
§61
wGl
£al
26l
LGl
06l
ofl
gtrl
Ll
9frl
Sl
il
Ewl-6€lL
gcL-eel
gEL=GL1L
hil=ELl
il
Ll

SY 00
wvaoo
£voo
¢V 00-0Y00
4600
3600
asoo
2600
4600
Y600
6600
8600
L600
9600
5600
1600
£600
2600
1600
0600
J800-4800
g.00-Y .00
¥800-€ 100
¢L00-1.00
0100
4900

183

Appendix B

,d93INnq pakad Ut sJdeyod
»passadd L3y aseq]

Majurod dnjses [auday

» Sppe laeqs Q/I

,NO0TJI33UT Jogqoum adegp

A Jd333jnq PJIOM TRTIJSQ

'PY/JM 03 BuTuIeWRJ SHO0Tq #
rJBYD 94ndutr pY/pPJom JITUS JIM
poWeU STIJ 03 Jd3UTod

» ®0TASDP quaJddn)y

,SsaJppe Apudoss quaddn)

+9TIJ TeOTBOT jusaddn)

s duWeu 3TIJ ul sJajoedeyd ¢

+Jng 234q31nNn0/Jdoddas Jajoedeyd pesy
» puss 03 31q 3xau 2¢esy/103 dl
,3U0 3Tq lpaTqeud JawTy dr=|
+1933nq adeq Jo gJdeas :Jajud

, Squeqsuo0d Jurtwty adegp

rueagodad jJo puj/sppe pud adeg
£8UurTTodos fuajng adeq :433UTO(
 K3Tded /unsqoayd pYy,/yjsuaT peaTl JM
y Asse a4 Lq/pugipiigupiueog dg
131438 /449 3TQ PY/ITq JJdBIS JJM
;3Ud 3TQUI/J0JJd pY/a34q Mau JJp df
,31quT/ssed py/aunod JpT JJdpM dI
rJd3jutod J91Jnqg adeg

861l
Lol
961L-G61
t6l-¢o61l
26l
L6l
061l
681l
ggl-.lal
981
98l
tgl
€8l
cgl
igl
081
6LL-8LL
LLL-9LL
SLl=-wll
gLL-2lL
LiL
0L\
691
891
Lol
991

9200
G200
t200-£200
2300-1200
0000
J4900
3900
agoo
2800-4400
vao0
64900
8400
L900
9400
Sd00
w€00
£900-2400
L900-04900
JV00-3Y00
avoo-2voo
gv00
Vvoo
6vY00
g8voo0
Lyo0
9v 00

184

Appendix B

,sB3JEB HJOM TIDSY 09 ButjeoTly
sd3ud xI 2€2-SY

s43ud Ady 2€2-sy

s493utod pueoqhay

rd@3utod JOTOO ua2dJ0g

JdajJdew MoJd u93Jog

- AUTT usados Awung

2pt -+t \9TQRY MUTT SUIT UI3JDG

r 8utpuedsino sIYISNI JO ¢
+Jd3J3INQ/UNSHOIYD /ARUT qsB]
+SBATT JS0Jdnd 3J3aYM MOy

rU33usT SUTT ud3dJdos juaddny
rpowwed8odd asTd ‘Josand 30941p=Q
r3UTT 9AOQE UO JOSJND JO UOT3TSO|
+AUTT U9IJOS 03 JdqUT0(
rpae0qLdN wWoJdJ/uddJdos wodJ andug
raseyd NUTTQ Uur Josdn)

$JOSAND J3PUn Jajoedey)
fUMOP3UNOD BUTWT] JOSJN)

+JdosJdnd yseri=Q

K3 ou JT 49 43 YOTUM
r(UUNTOO ‘Mod) Bol Josdndo gndug
¢423utod 9ndur Jojy SUIT-JOo-pujm
»3eT1] 9SJ2AdJ4 USDJOQ

992-6s¢
082-6he
ghe-Lhe
9hZ=Ghe
thieg-ene
che
Lhe
(0} IR AW
9i¢
qic
tiLe
€Le
cle
Lie
0ic-602
80¢
Loc
902
s0¢
woe
goze
20c-i0e
00¢
661

v0L0~4400
v400-6400
8400-.,400
9400~-5400
t400-£400
2400
1400
0400-6d00
8Q00
Laoo
9400
SQo0
tdoo
£aoo
c@00-1qo0
0do0
4000
J000
asoo
2000
4200
v¥000-6200
8300
L200

185

Appendix B

[NQg] wIoziad 118D oTseg 103 Apeay 08¥o

[LNOD] wIxoFI34d L&8O TAAQVEY, vLYO
[aNnd] wiozadg T€8O KA13us yeaig 699
[daors] wrozIrdogd 3¢8O auT3nol 1011y LEYO
yeaig 2Z8o \XYONZW J0 1IN0, GEFO
[Ayorsay¥] wiozisd PTI8O aoeds Kiowaw ¥03yD) §Opo
JulduWwLlels 3INDIAXY paLd yadap yoe3ls yo9ayn q3¢o
[4oa] wIoziaqg ZyLo Kiowow aAOK 8q€d
[LSIT] waIo3Fi1ag 9690 ans0on /404 103 yoe3xs ueos -2 Toge]
193utod 3x33 dn ydoeg 3g9d sobesSou SNOSURTTOOSTH G9€°
[uTd] wiozisg 9692 s10309A abessaw 10119 8z€o
[MaN] wIoJIdd Z¥90 gobessow 10113 9GO
2UI] OTSed PuTd €190 sp IomAay 2602
Sudyo3l Yyounid 6L.G0 S10303A 103e13dQ 0802
auTT Indur °2AT1909Y 0962 S10309A uOT3IOUNJ 2502
S9UTT UuTRYdD-3Y gegagd S10309A UOTIOR pIomAdy 2002
SUTT MOuU 2TpueH o6f0 S1023099A TOIJUOD WOY 0000

v

/ Ld@D - yd4dd

Koy doag 23s9y - T3Ad

sLNIdd - 2qdd

»LOANI - JD04d

» STAUURYD Q/1I 3I[neI9dp 310383y - DDJd

»Touueyd Indang 398 - 6144

»T3uuRYd 3Induy 388 9044

1359 =wonsgy :BUTPNTOoUI ‘aTqel dunf ¢ZG69-8T¥S9 ciii-vgdl 8

Ll

Appendix B

[33a] waoziagq

IIBITP YO3YD

[sO0d] wioFiag
UOTSISAUOD IROTI-POXTI
[dyd] wiojisg

921s Aeaie ajnduwo)
JALILNYAD TVOIATII,

L dI¥OSd0sS avd,

Keiie dn 388
UOTSIBAUOD PIXTI-3IeoTd
89LC¢ °onTeA

auT3noigns iajutod Aeiay
9TqerirRA 33B31)
oT3aqeydtre o3y
«dTgeTIeA 33EBDOT]

« [WIQ] wio3Iad

« 9da1eduwo)

[any] wIozaag

[¥0] wIoZIaq

asuaiajal NJd dn 398
alqetriea 10J Ydieas
abuea yooayp

I0112 Xevjuls

PUWOD JI0J }O3UD

s (, 203 ¥o8ud
s3yayoe1q UIYITM o3enTeal

£qep
gecp
26¢LP
T6EP
pLEDP
oFeEP
8vep
syep
PTIP
caip
selp
ve1p
PIIP
£TIP
qsop
180P
910P
6230
9930
Le3d
8¢3°
¥130
8030
Ju g £< 1o
L3330
T390

Id - 3juej3suo)
uotrssoi1dxa ajenyeajm
yoauo yojzew-adAy,
(LxaN] wroFiad
sobessaw 10119 3Indug
[avay] wioziasg

ndut 3 3duwoiag

[LndNI] wioFiag
[#1L0ndNI] wIoJaag

[139] wioFaag

sauT3inox ndur-peg
1930eIRYD JRWIOI JIUIIL
(e’X) woiaz obessauw jurag
[INI¥g] waoFaad

[awd] wIoFaag

[#LNI¥d] wIoFiag

[La7] wIoIxad

1aqunu jutod paxIi 399
[NO] wIoFIag

(Way] waoFiag

[d1] wio3zaag

JUdWHILIS IXBU I0JF uwds
[viva] wiaozasq
[NIALTFY] wIoFIradd
[0LOD] waoFidd

[ans0o] wioziaq

gead
wm@U
8LDd
TPO
030D
gQoo
6390
3900
geqo
qLqo
PYao
qagqo
aTqQo
geed
9ges
oges
ge6o
q962
av6o
aceo
8260
9060
8380
Zpgo
oego
€880

187

Appendix B

[NOS] wIoFIdg

ubts 399

T#0¥d punoy

Z#0V¥d 03 T#OVd
T4oeJ 03 ZHOVd
Kiousw 03 T#IOVd
T#oe3 03 KXIoudR
[3araiq] wirozasgd
0T 4Aq @pTAId

3d buTrleoTI UT 0T+
0T Aq ATd131nM

MOT J13A0/MOT FADPUN
Z#/140¥4 3Isnipv
Z#0Vd 031 L1owoy
3T1q-e-ATd T3 1NN
[XIdILTINW] Wi03F 194
[907] wio3iag

934&q o139z Aq A1d13aInm
 MOTAYIAO,

I¢oes JuswaTdwo)
[aay] wiojyirad
[LOovyians] wiozaaqd
wo1j-3oexliqnsg

S°0 PPY

[LI¥M] wIo3I3g
[@¥od] wiozasg

6€0P
qzop
qrop
20°p
o3qp
Loqp
zeqp
Z1I9p
aJjep
6Fep
zaep
ypep
Lqep
ogep
65ep
qzep
rvaep
£86P
3L6D
LV6P
e9gp
£68P
058P
6¥8P
pZ8p
pZ8p

[¥33d4] wioFiad
pPeXx1J-3e01d

3Tem/9jod 103 sueied 399
[TvA] wio3Iag

1a3aureaed a34iq ndur
[Os¥] wio3124
apow-HUT IS 3ITXF

[N3T] wIoFIadd
si93ouried burizs TIng
[saim] wioziag

[$1BDIY] wiojisd
[$1437] wi03I34

[$¥BD] wIozI94d

joe3s 103dT10S9p ueaId
but13s pajuemun piedsiq
Kaousuw o3 Hura3ls plIng
93 rU23BOUO)

puTI13s 3091T0D
K3T1TTqeabeaTes yoayd
UOT3I09TT0o abeqien
butils 107 WOO1 IR
butais dn 398

10309A BuTtI3s ajernole)d
[s¥Ls] wIojiag

[Nd] wIoJ1dq

xe3juls NI }o9Yd

po8p
LILD
qs.Lp
peLp
qe6Lp
q8.Lp
<8Lp
oLLP
T9LP
LELD
ocZLp
ooLP
o99p
apgp
£e9p
BL9P
peIp
909p
pqsp
9¢Zsp
vIve
L8YD
SLYD
S9YD
vIEp
I2¢P

188

Appendix B

s3j[nejsp o/1 388
si193uTod U®810s 398
108Ind SUWOH

usa1Ids 1edTd

U939 108 9ZTTeWION

0/1 @z1Te3TUI
UOTI3BDO0T I0SIND HOei]
SITWTIT U22108 398
Sippe z7ZGS9 IS

eaie yojed uweiboig
Y0070 ¥ InduTr TeTias 329
:0, Indano Tetrasg

+ T, 3andano fetisg
eaie yojzed uweiboid
31e3s91 wIeMm

§10309A 9ZTTRI3TUI
00€$ 103 sI0308A
abegssau dn-iamog
oTSed 8zZTTer3lTul

abed oix3z 103 IIOUHD
9Z2TTeT3TUl

[NLV] wr03I134

[NVL] wiozaad

[NIS] wi103713d

[S0D] wiozaeg
asoIdo/uado 103 si93aueieg

qqse
L85?
1852
1669
opGo
81Go
=A%)
5069
0059
oqpo
Zay
6epo
oepo
9Ly
L9¥o
asye
Ippo
621
yegs
L8ED
gLED
qoge
1qze
89ze
192°
912

PUIWOD 103 YO3Y)

sie3auwezred 3Tneioap jyoayd
aaes/peol 10] Si9j33ueied

[3s0T10] wio3ziag
[N3dO] waoFiag
[avo1] wio3iag

[X3193IA] wIOF13d
[GAVS] wio3a9g
[sx5] wio3Fzag

éé sautodyeairg ¢&¢
[aN¥] wio3FI3g

¢ @3enieas wwﬁuwm
T 93enteas wwﬁumm
[axd] wio3aag
[AAILYDAN] wIoFiag
HMNBOQH wioJisad
[40s] wiozasg
S3UeIsuod I,
S3Uue3suod HmEﬂUwQ

ITOoSe 03 3IrOTd

3TbTp TTOSE 389
oeJ o3 burias

[LNI] wI03134
paxI13-3e01d

wsw 03 T4OVd a1eduo)

[sgav] wiozasqg

qoza
€029
IPTa
yoTa
aqTe
G913
Z9T°
€510
LZTd
9309
v609
9509
0%02
pa3p
yq3p
aL3p
1L3D
eEID
913D
PPPD
2LPP
£30p
o00p
q6°p
agop
850D

189

Appendix B

su 1 Aetaqa

330 BUTT ¥O0TD

o SUTIT YO0TD

sSng [eTJI9S WOIF DATIOI9Y
,U23STTUn, puag
yTejun, pusg
po119J9p [eTias pusds
¥S Y T1e3 pusg

NIV Ied1D

VS u93sTT puss
IePTISS U0 3JINODUTY
sng TeTI9S 03 puag
ieyd TOoIjuod puas
U23STT, pPus§

1 ATe3, puag

MOT Sppe SUTT u29108
s3Tneiap dryos oTA
XTI3ew K39y ToIjuo)
xTajew X9y pPalFTyYs
9UTT ua3i1os dn deam
apou sotydeiab 3ag
T0o13u00 3x933/sotyderd
sdeu piroqlay
S10309A piroqhay
apou 3IxXa3 13°%
paeogiay Yo3U)

963
pg3®
78 3o
6133
vo3o
9339
yoo0
2009
G099
0099
Lqed
6y29
o199
LT®
AL
PIp®
vop°
gepa
egpo
qgpa
0EPa
TZp@
2go?
9yoo
0002
a1d®

(0¥1) 3dnizs3jul

Ieys 03 INOTO0d Youis
U999 108 uUuo 31038
U39108 03 JuUTid

SUTT U92108 1ed])
SUIT-JOo-3Ie3Ss 388
I9Jsue1l INOT02 Youlks
SUIT U2DI0S DAO0K
u2910s uo aoevds uado
u9910s [T010S
UOTISIBAUOD 3PO)D

aTqe3 °2pOO INOTOD
3apod INOTOO 3I°88
JUDWSADUT SUTT Yo93YD
JUSUWDIOSP SBUTIT YI9YD
NENLTE, od

9UTT 3IX3aU 03 09
uaaios o3 ndang

9UTT snotadad ojur yoed
1081Ind 33133y

10SInd doueApv

jurid usaios dn 388
3893 jiew a3jond
u9a10s woizy 3ndul
paeoqday woid ndul
satneiap diyos o91A 398

Iqes

zqe?
eeea

Tees
pge»
9/ed
agea
9Ged
9962
SL6°
6269
1769
¢16°
©lgo
8982
8pga
€089
cviLe
pcL®
STIL®
©993
G099
8q9°
Fv9e
Fogo
g€0g3

190

Appendix B

193utod adey dung
19peay oTJToads purg
siajutod pua

‘31e3s 1333Ing 39S
SSalppe 133Jng 2199
19peay ade3z a31aM
iapeay adey Aue putgd
sobessay 10119 OTTJ
Koy doas uot3loy
awIl 398

2UWTI 33D

¥o01o dung

1 DNIAVS,

wei1boiad saes
 ONIXJIYIA/DONIAYOT,
sweu aTIJ 3jurid

« ONIHOYVHS ,

ueiboid peon

Z€zsy uado

¥S puss

butusado S1TF oqa

0/1 3Inejsp 9210353y
SaTT3 TITe 3II10QV¥
sanieA aT1J 3§
9113 putd

9s0TD

eg883
L9873

7683
P¥83
(3L3
jeLd
9LLI
OLL3
L9LTF
09L3
L ANA
8¢CL3
SL93
e993
65993
LY93
[A4°F
LoYy3
S6v3
B0V 3
t3ed
Joed
IPeF
FOtF
eped

?0T1A9p 3ndano 398
20 TA9p 3Indur 398
adey o03°°

*+andangp
teTsy/Ter19s/adey **39n
andur

ZETSY woagye-*
.'umw
30911Tp 3T JUT1g
sabessoy
9TPT Snq TeTi18s }o3ayd
I933ng TETSY wWoiy 389
193309 Zz€£ZSY woiy 3Indug
1933nq ZgZSY 03 pues
Z€ZSY 03 o114
901A9p pegd
10119 BwWe1J 3ATI0dY
10119 3Yeda1qg 3ATaD9Y
10119 UNIIDA0 DATIOY
10113 A3jt1ied aAT1aoay
9AT9091 03 dn3es
(IKWN) °AT9D91 Zgzsy
junod 31q 33ndwod
3tnb 10 10119
puas 234q z€ZSY MON
(IWN) pues zgzsy

60¢3
LoT3
06Z3
eLZF
0623
2023
S0Z3
SI13
13
VLT3
0913
FVII
9113
P203
°qo3
6403
8e03
Se03
ceod
P603F
4503
9¢03F
LZ03
9103
2939
geja

191

Appendix B

SI03039A 91©MpIBRH
a1qe3 dunf{ oqunp

K13us {Yr uren

91qe3 burwrl Z€ZSY

3IX9 % 910359y

sapuanbas z£7SY IWN

31e3s wieM dOLS/LISIAY

K13ua adniasjur INN
uo1jed0T Aaowduw 3ISIL
Arowsuw Jo wo3joq 3as/pedy
Aiowau Jo dol 39s/pesy
JInoauwTy 39§

LS bera

snje3ls 339

STTelap a1TJ 9Aeg

aWleu e3ep 2ARS

sbai O0/1I @2zTTer3Tul

S10309A QOVI

S3juep3lsuod ue3sAs 9ZITETIITUI

e333
eg833
ZL33
0633
9633
opaj
ipa3
6ea3
1693
893
gLd3
F9o3
9993
LG33
0623
6v23
6IP3
13P3
pP8pPJ

ZTeuiay 3as
woi-y 3Yo93yd

K13ua dniamod

123utod 23T1aM/peaa dung
I93utod 83TIM/pEaI YOI9YD
Iojouw TTITH

10309A 338

SI10393A 910359y

(0¥I) @3Tam i3pearq

(09gr) @23ram adeg

93T1IM ele(

adey atbbog

dnjas 1a3jorieyo adey moON
1aj3uTtod 39s9y

Siajorieyo 31038

(0¥1) s3atq pesy

burury 398

do3s ade3 yoayd
?31am/pea1 adey uouwwod
92311M ade3 a3eT3TUI

peaa adej ajeT3TuUI

1 *° @900dy¥ ssdyd,

sn3e3s 9333SSeD YOIAYD

» °° XV'1d SSdud,

[A)
FEPI
(44 °F
aip3
1i1P3
80pP3
9303
3003
5693
q0°3
9003
©aqy
apq3
(A3
peez
9863
PS6F
aved
¥383
€983
0583
La83
qeg3l
¥683

192

e

Appendix B

Map 6. Commodore 64 Memory Map.

Vi V2 V3

D400 D407 D4VE
D401 D408 D40F

D402 D409 D410
D403 D40A D411

D404 D40B D412

D405 D40C D413

D406 D40D D414

D415
D416

D417

D418

SID (6581) Commodore 64

Frequency

Pulse Width L

l H
0 00O :
Voice Type
NSE PUL SAW TRl l
i 1 i
Attack Time

2ms - 8 sec I
| 1 L

Key
1 1 L.
Decay Time
6 ms - 24 sec
i i J
Release Time

6 ms - 24 sec
—1 A [

Sustain Level I
1 L [

Voices
(Write Only)

Filter Frequency

Filter Voices

Resonance
| EXT V3 v2 V1

| R Vi

Passband
Hi Bd

Master

Lo Volume

V3
off | N A

Filter & Volume
(Wnte Only)

vl v2 v3

54272 54279 54286
54273 54280 54287

54274 54281 54288
54275 54282 54289

54276 54283 54290

54277 54284 54291

54278 54285 54292

54293
54294

54295

54296

193

Appendix B

.

D419 Paddle X 54297

D41A Paddle Y 54298

D41B Noise 3 (Random) 54299

D41C Envelope 3 54300
S

(Read Only) ense

Speacial voice features (TEST, RING MOD, SYNC) are omitted from the above diagram.

$DD00

$DDO1

$DDO02

$DDO03

$DD04
$DD05

$DDO06
$DDO7

$DDOD

$DDOE

$DDOF

194

CIA 2 (NMD) (6526) Commodore 64
Bl T T T T ¥ T
Senal Clock Serial Clock ATN RS-232
In | In , Out[OutJOutl Out |
DSR] CTSl DCD* | RI* | DIR I RTS*[RS-232
In In In In QOut Out In
Parallel User Port
IN IN Out Out Out Out Out Out
$3F
$06 For RS-232
Timer A
Timer B
N
RS-232 Timer Timer
In B i A
Timer
| A Start
Timer
| B Start

*Connected but not used by system

PRA 56576

PRB 56577

DDRA 56578

DDRB 56579

TAL 56580
TAH 56581

TBL 56582
TBH 56583

ICR 56589

CRA 56590

CRB 56591

Appendix B

$0000
$0001

$DCO0

$DCO01

$DC02
$DCO03
$DC04
$DCO05
$DC06
$DCO7

$DCOD

$DCOE

$DCOF

Processor 1/O Port (6510) Commodore 64
IN IN Ou IN Our Out Out Out
I 1 ! ooy DDR 0O
Tape Tape Tape [DRom EFRAM ABRAM | FR 1
Motor Sense Write | Switch Switch Switch
I] 1 i i
CIA 1 (IRQ) (6526) Commodore 64
Paddle SEL Joystick 0
R L D
.i____._B__ ___-__________E____ PRA 56320
Keyboard Row Select (Inverted)
Joystick 1
_________________ PRB 56321
Keyboard Column Read
$FF — All Output DDRA 56322
$00 — All Input DDRB 56323
TAL 56324
T Timer A TAH 56325
TBL 56326
T Timer B] TBH 56327
~ ~
Tape Timer Interr ICR 56333
) L Input | B, A
One Out Timer CRA 56334
Shot Mode ,,, AStart
1 1 1 1]])
One Out "M Timer | CRB 56335
Shot Mode PB7 B Start
Out
1 1 1 1 1 | |

195

Appendix B

oIseg-3Jo-31e3}S :133jUrod
uotyeorrdi3Tnu 10J eaIe 3ONpoid
eaie 13jutrod A3rT113n

sbuti3ys Aieiodwsl 103 joejs
10303A butiys dwaj 3seq

joejls biys Aieaodway :i133jurog
antea 1abajug

bet3y 3dwoid o/I 3juaiin)

be13 Teas uostiedwod/ubis NIV
avid=86$ 130=0%$ ‘LNdNI=0

ber3 xN4d/3driosqns

ber3y Aawaw/aj3onb LSI7/uedSs yIvd
jutrod burjeor3=00 ‘i13bajur=0g :adAL
otrasuwnu=Q0Q ‘butiys=gg :adiy
be13 Wia 3tnezad

3diosqns g/133utrod 1333ng 3Indul
AdTHIA=T ‘a@v¥01=0

9APS uwunNiod g9vl

ber3 ssjonb-uedg

1330er1RYyD yYdieas

10309A 3eOTJ-PaXTJd

10308A paxtg-3eold

toajuod ade3 3 Aiowaw g/1 d1yd
193s1bax1 teuor3oazrp diyd
uotidriosadg

vv-€tv
Zv-8¢t
LE-VE
£€g-6¢
vZ-tc
Zz
12-0¢
61
81
LT
91
St
Al
1
(AN
11

OCHMINM~SOONO
~

Tewtrsag

2Z200-49200
¥Z00-9200
§200-¢200
1200-6100
8100-LT00
9100
ST00-FT100
€100
¢t00
1100
0oto00
d000
3000
aooo
2000
4000
vo000
6000
8000
L0000
9000-5000
?000-£000
1000
0000
X9H

deyy Liowayy p9

104

Appendix B

(mo73J13A0) 19pio-ty THWNOOY
193urod juep3lsSu0d uolleniead S3aTIag
ubrs :Tg$undoy

eSSTIURW :THWNDOY

juauodx3 :T4wndoy

eale }I10M DrIauwnu OSIW

suotjouny 103 10303a dunp

0312 ‘siajutod ‘eale jyiom OSIW
10jernunooe toquiAs uostiedwo)n

aaes 19jutod diseg !aaes-do !aaes-}x
LXIN/H¥0d 103 13jutod a7qeliep
ssalippe aygelliea 3juai1inp

aweu afqeriea 3ualiny

10393A 3Indug

ssaippe YIVd 3jusa1ind

1aqunu 3UI[¥YIvd 3uaiand

INOD 103 juawajels orsedg :133urod
iaqunu 3Ul[O1sedg snoralaid

laqunu 3ul[diseg 3juaiin)d
K1owasw-Jo-3TwIT :133Utod

193utod buriis A3rT11an

(umop bBuraouw)abeiozs-burils :133urod
sAe11y-Jo-puj :13jutrod
sAe11y-Jo-31els :133jurod
safqeiriepa-Jo-31els :133jurod

POt

£E0T

(AR
T0T-86

L6
96-L8
98-78
£€8-8L

LL
9L-SL
PL-EL
cL-TL
0L-69
89-L9
99-599
r9-¢£9
Z9-19
09-65
86-LS
96-GS
FS-€5
Ze-19
0S-6V
8v-LY
97 -Sv

8900

L900

9900
S5900-2900

1900
0900-LS00
9500-¥500
£€500-3%00

arvoo
op00-49v00
vy00-67v00
8¥00-LP0O0
9%¥00-S¥v00
vy00-€EV00
¢y00-1v00
0700-4€00
Jeo00-acoo
J£00-4d€00
¥YE00-6€00
8€00-LEOO
9€00-S€00
PEOO-€E00
ZE00-1t00
0£00-4200
3z00-acoo

197

Appendix B

ber3y I1I03/3unoo 31q TeI13S

TWH 30013 A331r

p331031100 bor 118 Z sseq dg
1333nq 1eyd/boy 1o011s [ssed di
1013u0d 3Indino Q=NNY/08$=39311d
ber3 paaraoai-a3ig

A3tied i1ajoeaeyo adey

€ Attewiou ‘sorasp @wd 3Ind3ing

0 A{tewiou ‘sora3ap 3ndujg

S3713 uado Auew moy

aaes 133si1bay

paat9d31 103 adey

1330vIEyD pa113J3pP [eT113S

be13 1eyo pai1i1s3zap :3ndino [eriag
1=A3113A ‘0Q=proOT

ade3 103 juejsuod burtwryg

sbel3 SAY Pue dOLS :V¥Id Yol imsiay
LS piom sn3iels

anTeAa paas (ONY

(uzaqns utrylztm) 193utod oiseg
leyd o1seg 13I3b !surjnoiqns LIOHHD
133utod ssri13s/ual 33jng a31asse)
(burpunol) 13pio-07 T#wWnooy

Z# sSa T§ooy ‘uostiedwod ubisg

*033 ‘jusuodx3 :z#uwnooy

€91
¢91-091
6S 1T
86T
LST
961
S61T
AR
1R
(AR
1681
0S1
6vI
81
Lvl
9Pt
LA
A&}
EVI-6ET
€¢1-2¢1
8e1-611
PTT-E1T
(AR
11
0TT-S0T

£Y00
Z¢¥00-0%00
d600
3600
aeoo
2600
8600
Y600
6600
8600
L600
9600
5600
7600
£€600
2600
1600
0600
d800-49800
84L00-YL00
¥800-€L00
¢L00-TL0OO
0400
d900
d900-6900

198

Appendix B

ssaappe 3jie3s 0o/1

3o01a33ur 1030w ade]

193jng piom Te113g

py/IM 03 bututewsai s)yo07q %

leyo 3ndur py/piom 3IJTIYs IM

aweu a[1J 03 I393jutod

901A3D 3jU311IN)

ssaippe Apudas juaian)

9113 Teo1borl 3juaiin)

aweu a[1J Ul siajoeieyo ¢

jnq a3Akgino/10118 133deiRydD pE3Y
puas 03 31q 3IXau Zgzsy/lod di
junod 31q !parqeua aawily dr=T
1933nq adey jo 3jie3ls :13jud
sjuejsuod butwiy adel

weiboid 3jo pug/sppe pua adey]
burrtoios ‘fi3ynqg adey :iajurod
A3tied/unsxoayos py/yibuay pear aMm
Asse 9#34q/pul!p71!3upfueos di
3193s/113 31q py/3ITq 3Iels 1IM
jud 31qur/10113 pY/33Aq Mau JaMm dL
31qui/ssed py/3iuncd 1pr IaM dg
133utod 1a33nq adey

3Uunod 31q/931aM adej‘umopiuno)d
jqunod a7124)

P61-€61
¢61
161
061
681
881-L81
981
S81
r8t
£81
81
181
081
6LT-8LT
LLT-9LT
SLT-PLT
€ELT-CLT
LT
0LT
691
891
L9t
991
S9t1
ot

¢000-1000
0000
4400
3400
adgoo
J800-94d00
vd00
6400
8400
LH00
9400
Sd00
€00
£€400-24d00
1400-04d00
dv¥00-3aV00
avoo-2voo
gv00
YVv00
6v00
8vo00
LY00
9v00
SVv00
rvoo

199

Appendix B

“eale jyliom IIDSY 03 burjeord
*13ud xI zgz-syH

*13ud AdY zZgz-SH

13jutod pieoqgdhay

/133utrod 10700 u33i1ds

(op2 -Liv) 37gqeyl JUI[SUIT uaaiog
~ butpue3isino sSLHISNI JO #
1333Inq/unsyoayo/Aasur 3seq

/ S3ATT 1S01ndD 313aym Moy

yibusy aury usaids jusiiny

pauweiboad asTe ‘10sind 32911p=0
SUIT 92AO0QE UO 10SiINd JO UOI3ISod
SUIT U3310S 03 133juUtod

paieoqiay woij/usaids woiJ 3ndur
aseyd juirg ulr x0sind

10s1nd 13pun 133jodoeieyd

umopilunod putwil 10siIn)

10s1nd ysel13I=0

Aay ou 31 §9 :4K8% Yorym

(uuntod ‘Moi1) bHoy 10sand 3ndul
13jutod 3nduy 103 auii-Jjo-pud
be13 asiaasai1 usaiodg

1933nq pqghay ul sieyo §

passaid Aay j3se]

133utod dnjas Tauiay

99Z-6s¢
052-602
8vZ-L¥bC
9vZ-Sre
pvZ-tvc
ZrZ-L1?
91¢
STz
vie
€1z

(AR
11e
01Z-60¢
80¢
LoC
90¢
502
voc
1314
Zoc-10¢
00¢
661
861
L6l
96 1-G61

Y0T10-4400
¥400-6400
8400-£400
9400-5400
7d00-€400
¢400-64d00
8d00
Laoo
9d00
Sdoo

vaoo
£doo
Zaoo-tdoo
0doo0
4000
3000
asoo
2200
8200
¥200-6200
8200
LD00
9000
5000
?000-£000

200

Appendix B

bai1 puewwoo zgz-SY

bai Toijuod zgz-sH

aTqeua [1012s=0

raims oL 3a0- 0" YR = 3%, Y 4 gpow 331Yys pieoqhay
133urod dnias atqel paeoqhay

uraljed 3J1ys 3se1q]

+ber3 1013U0D/3JIYS pieoqlhay

,133unoco Aeiap 3eaday

o r133Uunoco paads 3jeaday
2a 0 B LaGgang rmIO ~O Y \\»W%W& 11® Uﬂ@&@“
riajjing pgqhay jo 9zZISs XeW

,9bed Aiowaw uaaiog

10S1Ind 13pun 10T0D

/ @pod 10T0D 3Juaiin)

ber3 3noawrl sng [eTI9S

»Kioway orseg jo dog

srR1oway orsedg Jo 3ielsg

» 18330nq pqhay

+,9Tqe3 spp¥ 23S

4 9Tqel § 3o1A3Q

~a1qe3 a1y reorbon

#19330nq 3nduy orseq

eale joels 10SS3201d

bot 10118 adey

099
659
899
LS9
9G9-GS9
vS9
€59
Zs9
159
059
6v9
879
L9
9v9
Sv9
vvo-tvo
Zv9-1v9
0%9-1¢9
0€9-TZ9
02¢9-1T19
0T19-109
009-¢1S
T1S-95¢
81E-99¢

v6co
£620
¢6c0
1620
0620-4820
d8¢0
aseo
J8¢20
8820
¥8Z0
6820
8820
L820
98¢0
9820
F820-€820
£8Z20-18¢20
0820-LLZ0
9LZ0-09%20
J920-€9¢0
¢920-6S20
8520-0020
J4T7T0-00T0
d€19-00TO0

201

Appendix B

aaes bal sn3ieys gxs

aaes bail-x gxs

aaes bai-yx sZxs

aaes bai-y Sxs

JUIT JUBWa[a or3awyirie 3an
YUIT 3apoo oIseg Mau 3ie3s
NUIT Suayolz utid

YUIT Suaxol olseg yoauni)n
HUIT 3J1e3S wiem orseq

~ fUIT abessaw 10113

(TT 3@3r11dsg)

) 13jIew MOI U33I1IOS
berT3 parqeus v 1awyl [VYID
bo1 adniisjur T ¥ID

boT T1013u0D v 13WIY [VID
1013uo0) 3dniid3jul (IWN) ¢ VIO
0/1 adey bHBurinp aaes QI
193urod 3ndano zeezsy
lajurod jrwsueiyl zeezsy
I193jurod 3ndur ZgZsy
I19jurod aAT9091 ZEZSYH
apoo/paads zgz-sSH

puas 03 s31Iq ¢

snielis gzgeg-sy

Burwry 31g

t8L
c8L
8L
08L
6LL-8LL
LLL-9LL
SLL-VLL
ELL-CLL
TLL-0LL
69L-89L
99L-70L
LLY
9L9
SL9
vLo
€L9
cL9-TLY
0L9
699
899
L£99
S99
799
€99
¢99-199

J0€0
J0¢€0
aoeo
J0¢0
g20€0-¥0€0
60€0-80€0
L0€0-90¢0
S0€0-¥0¢€0
€0€0-20¢€0
T10€0-00¢0
3420-00¢20
QvZo0
vveo
£EveZo
Zveo
18 {4)
0vZo-de6c0
Jezo
asco
2620
8620
¥620-6620
8620
L620
9620-G6¢20

202

Appendix B

eaie ur-bnyd woy
A1owaw WYY orsed 65607-8%02

(qasd)
(s¥pd)
(9934)
(dz€d)
(actd)
(a3od)
(vOoT1ad)
(Ls14d)
(cecd)
(ogzd)
(30zd)
(t62d)
(¥ped)
(Lvad)
(9934d)
(Tevwad)
(8% z4g)

Sy

Alowaw usaing

(61 @3rads)

(y1 @3rads)

(ET @31ads)
(1833nq 9333sse)
FUIT FAVS

JUIT AvO1

10303A 31B3S WieMm
10329A 0/1I 330QVY
10303A L3O

10309A dOLS—-3IS3aL
10309A 3Indang
10303A LNdNI
1030994a Q/1I 3103s3Yy
10309A 3nd3ino-39g
10308A 3Indur-3asg
10323A 3FS010
10309A NIdO

10309A 3dniiajuy IWN

10303A 3dniiajur yeaag
10303A 3dniiajuy aiempiey

dun{ uor3ounj ysn

IR A A XA
¢Z0T-096
856-968
v68-ct8
610T-828
618-818
L18-9T18
ST8-PT8
£18-C18
T18-0T8
608-808
L08-908
S08-708
£08-208
108-008
66L-86L
L6L-96L
S6L-V6L
£€6L-26L
T6L-06L
68L-88L
S8L-V8L

$93eura3Tv 6560V-89L2f J346-0008

4446-0080
J4£L0-00¥%0
dd€0-00€0
dg9€0-08¢€0
dLE0-0%€EO
g4€0-0€€0
EEE€0-2€E0
TEE0-0€EO0
d2€0-32€0
azeo0-0z¢€o
g8CE0-¥YZEO0
62€0-82Z¢€0
LZE0-92¢0
GZE0-¥v2EoO
£E2€0-22¢€0
TZ€0-02€0
JTE0-3dT€EO
aiteo-o1¢€0
Hg1E0-VTIEO
6T€0-8TE0
LIE0-91¢€E0
STE0-F1E0
ZIE€0-0TEO

203

Appendix B

139 - ¢3dd
Kay do3s 3sal - T1ddd
INI¥d - zadd
LOdNI - JDdd
sTauueyos Q/I 3ITnejap 91031s3y - DD4d
T3uueys 3ndinQ 39S - 6244
Tauueys 3ndul 33s - 9D4d
:burpntour ‘srqel dunp $Z559-60%59 SIII-I84d
WYY :93eUl13d31TV SE€659-bVE€LS JIII-0003
wa3sAg burjeiradp :WOY SE€GS9-VPELS AIII-0003
39S 133j0eIRYD :93RPUIBITV EVELS~-8VZES JIIA-0004
(VIO 9259) IWN ‘Z dryo aoe3jiajul 16599-9.G695 J0da-00aa
(VID 9259) 0dI ‘T dryo aoe3jiajul G€£96-0Z2€9S J4020-0004
Aiowaw a1qqhu 1070D 6T1€£95-962G6G IJI9A-008d
(axs 1859) dryd punos Q0E€VS-ZLZ¥S JIPA-00vA
(99G9) dryo O08pPIA ¥62ES-8PZES I20d-0004
a3euialire buipnroutr ‘Airowaw Wvy L¥ZE€S-ZGI6V AIID-000D
WYy :93eulallv T1S16v-0906% JIIE-000V
orseg :WOY TST6U-0960F IIJE-000V

204

Appendix B

HIINTIOd HIDYNVYW 3714 NSIO! 8100$

H01J3A HO4 ONVWWOD: L1008

¥31SI93Y SSIVAAY ¥3IJ4ng LIIWIONT® Gt00%
(SLIND 23SW 9T NI) %2012 IWIL Tvay! 2100$
OVI4 AN NvIug: 11008

YIIANVH QYI A3NOd HOJ XSYW WILSAS! 0i00¢
Y3TANVH 1dNUYILNI: gt1008

L1YVIS WYVM d0 0103 v NO O3WVITD

LIWIT IH AYOWIW SNOILVIIlddy: 30008
S$S3¥AAV LINI 3IYYMLIO0S NSIO: 2000%

9VTd LUVIS IuvmL40S XSIA: vo00S$

<¢1008 Svm> 9v14 1008 INISSIIINS: 60008
9VI4 LYVIS WHUM: 80008%

AINO 1Y¥VLS 0702 NO 03WvVIT)

H3ILSIBIY vivad 1S3L WYY: £000$

37TS WvY¥ 04 YILSIDIY AYVYOGLWIL: 9000%
1S31 AYOW3W HO4 HIINIOd Wvl: r000$
NOILVI07 LINI 3113SSV¥D: 2000%

a3Y¥v31) LON 38V SNOILVI01 3S3HIL

(Wvy¥ ¥OLINOW A8 G3DV1d3¥ 38 11IM) WYY DNENIT! 0000$

SINIWNSISSY Wvy 0¥3iZ I9vd

SW4XSa

1W02JI

yaving
A207210y
AINNYE
ASWNO0d
SHZINI

ITHWddY
INISOO
J3AS0a

01008
1SWYYm

1v01SL
ZSWvyl

0wy
INISYD

SAZNIT

8100

L100

S100

2100
1100
0t00
0100

3000
2000
Vo000
6000
8000

£000
8000
000
¢000

0000

‘Aowsy uery -7 deyy

205

Appendix B

(3LA8 01) ¥344NE VYLIVO 40 ONI LS¥d I1AE LXIN® v£00$ = 01IN3i8 €00

{31A8 IH) ¥344nE VIVO OL HILINIOd' €€00% = 1HY4Ng £€00
(3LA8 01) ¥344ng VYIVO Ol ¥ILNIOd: 2£00% = 074408 ZE00
{ANYHYD HLIM WNS 3LAE ITINIS) WNSHIIHI! 1€00$ = WNSYH) 1€00
I9YH0LS SNLYLS TYNYILNI' 0€00$ = SNLVLS 0€00

NOILYYI0 LNIM¥ND ¥O04 JLAE ¥ILowuvud! £+Z4dSII = ¥HIOID 4200
91 X HIGWNN 8001 2+7¥dSI1 = ONQIDI 3200

(3sn v207 012) S3ILAE IYV4S OML: DZoo$ = 74dSII 2200

9200$ = 22XV)1 8200

31A8 1SHI4 NOILYWHOANI ANVITIXNY: vZ00$ = 71Xv01 ' veoo
6200$ = 7HI9D1 6200

J1AE MO HIDNIT ¥344n8: 82008 = 711821 8200

' £200$ = ZHLdII L200

T - $SIYOOV INILNOY 31A8 Ind: 9200% = 211491 9200

J1A8 HOIH SSI¥AOV HI4iNG: G2Z00$ = ZHYEII g200

3LA8 MO SSIYAAY ¥344n8: vezoos = 17v8d1 veoo

NOILOV 4201 LSVl 40 SNiviS: £200% = IY1S31 €200

3000 ONVMWOD: 2200% = ZW0J3J1 2200

(43gWnN 3IATHO) HIGWNN IJIA3Q 1zoo$ = IONOJI 1200
(3344 €201 == 44) ¥IGWNN XION1 ¥ITONVH: 0200% = ZQIHJI 0z00
07008 = SVY8301 0200

V3IYY 8201 3IHL 30 HLONIT: 2S830T+8 = JOIXVW 0800
8301 ¥3d S3ILA8 40 YIAWNN® 91 = 758301 0100

2079 TOYINOD 0/1 39¥d 0M3Z: 0200% = 80012 0200
YILSIDIY AYVYOdWIL® 41008 = diWilid 4100

JZIS H344NE LINIYd* 3100$ = 7S4ndd 3100

YILNIOd ¥344N8 YILINIHd'® Qi o0$ = 1NdSd otoo

H3ISISIY LNO INIL ¥ILNIUd: J100% = 1OWIld J100

206

¥3INIOd S3TLITILN X¥SIC! V100§ = 11AXSa Y100

Appendix B

1¥vIS @700 Lv INTYA S NIUYWT®

(S¥0702 Q1314AYTd HLIM 0.¥03) ¥IL4IHS ¥O10D LOVHLY:
9YT4 LOVHLIY XHVO!
9Y14 LoVHLY!

SNLYLS AV1dSIO®
9v14 1008 3113SSVD!
(Q3SS3Ud LYVYLIS IWYD NIHM LIS HYI4:

39vd O0Y3Z HIABYNVYW 3114 XSIG 04 S3LA8 [40 VIOL®

(0¥37-NON 41 T¥IILI¥)) NOILH3IS TWIILIND SINIHI0!
(13Ind SI 0¥3Z) 9V14 O/I ASION:

OV14 VIVO SMOTT04 WNSXHIIHD ON:

9v1d4 LN3S WASXIIHD!

9v74 INOO NOISSIWSNWHL:®

9v74 INOQ 3IAITIIY!

9vI4 7IN4 ¥324n8 vivVO:

SITYLIY IDIAIQ 40 HIGWNN'

SITUI3Y IWVYd ONVHWOD JO YIGWNN:

(3148 IH) ¥344N9 VIVO 40 ON3 ISvd 31A€ LX3N'

16008
0500$
6€

[4

4v00¢
00§
0v00$

av00¢%
8v00$
vvoo0$

€Y00$

2v00$
17008
0¥00$
4€00%
3€009%
acoos

J€008
4£00¢
VEDOS
6£00$
8E00%
L£00%
9€00$
GE00¢

T010H
HYHIdWL
3903y
ELER N

HSY102
ASWXYO
1ovdiy
1Y1S0
19SSvYD
AIND

9d7SW4
J011¥)
¥aNNoS
0344
4034
3dAld
y1dg
WSYJ0N
INSYHD
NOGLWX
NaADIY
144408
AY¥13¥Q

A¥13IHI
IHN348

1600
0500

Y00
Ivoo0
ovoo

avoo
avoo
Vvo0

£v00

2v00
%00
0%00
4i€00
€00
aeoo

JE00
g€00
veoo
6€00
8£00
LEOO
9€00
€00

207

Appendix B

AIVLS -- T 3I5vd

SO0 OGNV SWd ‘¥3Sn ‘dd ¥04 IV 44 - 08

J0¥d L4IHS B TIND 240438 HOLIOX NI 3JY¥IH OIAOW SI HI: J2L008 =
Q3ddVMS SI WYY ¥YIND3IY ANV LXL 41 O-NON: 8,008 =
SdW3L WOONVY 40
ASYW LIg: 3900$ =
¥ILINIOd HIL3I9 ¥OL103: 29009 =

LINNGD Y¥344N8- 8900¢ =

JI907 NO ¥3IMOd AS GINI43I0 IZIS Wvd: v900$ =
8900¢ =

99008 =

$900% =

INIT TVIID0T NI NWNTI0J LY SINTOd: €900¢ =
19008 =

0l S309 MYY0 IN10d® 0900¢% =

35008 =

40S¥ND ¥IONN Viva: asoos =

85008 =

v500$ "

86008 =

L5008 =

§600$ =

SYILNNOD ¥OSHUNI: 9009 =

(NO ¥3IMOd LV INO OL 13S) NIDYYW LHOIY! £600$ =
(NO ¥3MOd Lv INO OL L3S) NIDHYW 1431 25008 =

se sm e te a4 sa ca se se

HOOT0H
974dMS
S101 ¢
ASWII8
y1s4ng
1NJ4n8
dOoLnvY
YAVAYS
dWL1TW
S$S3Hav
702901
T0OM3N
MOYMIN
H0Va10
HHIO10
10340170
MOY010
JSWAYS
X3aNIO
S¥3703
SHIMOY
NOHYWY
NOYYW

3L00
8,00

3900
2900
8900
V900
8900
9900
¥900
€900
1900
0900
1500
Qagoo0
4500
v§00
8500
LS00
G600
500
€500
2500

208

Appendix B

WYY HILSIDIY TLINS' 2€eo$ =

3148 HOIH ISIT AVIdSIO 3JAYS: 1£20% =

3LA8 MO LSIT AVI4SIO IAYS: 0€20% =
¥3ILSIDIY TLIVWO 3IAVYS: 42208 =

Y14 G UIWIL NMOO LNNOJ: 3z20% =

9y 14 ¢ YIWIL NMOO LNNOJ: 2220% =

YIWIL L1v¥3d3IY IUYMLI40S: @z220% =

9y¥T14 € ¥IWIL NMOQ LNNOD' vzzo$ =

$SIUO0Y USC 2 YIWIL NMOO INNCI: 8z20$ =
$SIUA0Y USC T YIWIL NMOO LNNOI: 9220% =
¥OLJ3IA IWN XNVI8 TWIIL¥3IA 03¥¥ILI0: ¥vz20$ =
MOLJIA IWN MNYTE TWIILHIA ILVIOIWWI: 2220% =
G ¥IWIL NMOO LNNOD: 0220% =

t YIWIL NMOQ LNNOD® 3T20% =

€ YIWIL NMOQ INNOI: D120$ =

Z YIWIL NMOO INNOD: V120% =

T YIWIL NMOO INNOD! 8120% =

HOLJ3IA DYI JLVIOIWWI® 9120% =

OMI v ¥IWIL AIXOd: +120$ =

OMI 2 ¥IWIL AINO4: 2T20% =

OMI T ¥3IWIL A3INOd: 0120% a

OYI 3137dWOD INdLINO TVIYNIS AINOd: 3020$ =
O¥1 AOY3IY¥ INGINO TWIWIS AINO4: 2020% =
OMI AQVIY LNdNI TWIWIS AINOd: v020$ =
H0LJ3A DYI OMYOSAIX AINOL: 8020% =

H0123A OMI NOILONYISNI (00) ¥v3Iug I14¥MLI40S: 9020% =
¥OLIIA OHI 3NIT LdNYHILNI® v020% =

¥0123A OMI 3INIT QI3J0ud: 2020% =
YOL1J3A IWN LSIT AvV1dSIO* 00z0$ -
WYY LdNYYILNT: 00208 =

SINIWNDISSY Wy¥ OML 3I9vd

TLIXSS
H1S7as
11s1as
TLOWasS
G4WL0D
P AWL10D
YWILYS
€1W102
CYWLaD
TYWL0D
OXT8AA
IXT9AA
SAWLAD
YAWLOD
EAWLO0D
¢AWL0D
TAWLAD
OYIWIA
PUWILLIA
ZUWILIA
TUWILIA
J0Y3SA
HOYASA
N1d3SA
0gAINA
AvIHEA
HILINIA
a324dA
1$74aA
SEVINI

.

¢eeo
1€20
0ezo0
42¢0
3e20
220
8220
veeo
8220
9220
¥eeo
éeeo
0220
3120
Jteo
vizo
8120
9120
120
¢1eo
otzo
3020
J020
v02o
8020
90¢0
r02o
2020
00c0
0020

209

Appendix B

L1832 Kytdotrdad teqon:?

INTIVA TYIILYIA N3Id LHIIT:
INTYA TVLNOZIYOH N3Id LHIIT®

al208
vieos
6L208
8L20$

SAITLSAOD

£L20$
9/20%
G208
vL20$
€208
eLeos
12208
0L208

SH3ILIWO11NILOd

492%

G€20%
vYE20$

ENOILS
eXIILS
THII1S
OXJILS

£1aqvd
970avd
s1aavd
1aavd
£70avd
210avd
110avd
07Q0vd

¢

.
1
.
.
.

HOIHd9

AN3dT
HN3d

aLzo
vizo
6420
820

LL20
9L20
6120
vieo
€420
eLeo
1Lz
0Leo

4920

GEZ0
re2o

210

Appendix B

Meup JOy bely (1LY £920%

(Kex taeyy Agq pa(B6Boy) Be|y ospta assanug! 9820%
’ dew 719 jJe9s aut| [edLboT: 2820% =
tery adeosy! Zvzos =

("238) 1x83 4oy |ooptLo pue moupjo! ggz0$ =

OSW M3U OJUL 1J3AUOD S| 00y 620 =

X3put Ixaf:’ £620% =

$40{00 9x3f! 16208 =

SJOMOd X8 ! 0620% =

pajuawwod ad4am Burmo| |0y sy3 ‘saigersea §Q wopues Kuey

£820% =
9820% =
G820% =
¥820% =

d399THL NITLSAOL

€820% =
28209 =
18208 =
0820% =
11208 =
11208 =
atezos =
22208 =

4399144 3700vd

914714
9VI4ANT
dYW901
974083
gloLxt
JISHEXL
X3IGNIL
1004£X1L
MOHEX L

€914LS
¢O14LS
1914dLS
09141LS

£91dtd
99 [dLd
GoI¥Ld
¥91did
£914id
¢9Tutd
191did
097dtd

1820
98¢0
2820
V2o
9620
¥6¢0
£620
1620
0620

{820
9820
§8¢0
¥820

€820
2820
1820
0gzo
4420
3£20
aLeo
JL20

211

Appendix B

(MvyQ) vive 1114 LH9LY: g420% =
WYY H3LSI93Y SYSBHI: ¥420% =

WYY ¥ILSIDIY TLIVHD: £420% =
Aeap Aoy! 1120% =
(NO ¥OSHMD = 00) LIGIHNI ¥AS¥NI' 0420% =

¥314n8 SNEVIS! v3208

AHOWIW H¥3ISN 3T9VTIVAV 0 WOLIO8' £320%
AYOWIW ¥ISN IISYTIVAY 40 dOL' §320%
(AINO 3£A8 IH) 37IS Wv¥: ¥320%

[I 1

S$378YI YA Y8019

¥ ¥0103! 8220% =

€ 40102 £320% =

2 40102 9320% =

1 ¥0102¢ 6J20% =

0 ¥0703! ¥220¢% =

401700 ed* €220% =

40102 24° cJ20% =

010D 1d: 12208 =

40702 0d: 0020% =

S¥0102

*311€S § 'WJON $Z :u88JIS JO wolroegl 1920% =
Y301 1iLys! 3920% =

§84n330 (042§ JL 18S' A920$ =

Lyaitd
SY8HD
LIVHD

T130AD

HNISHO

LVESAQ

OTWIW
dOLIWIW
ZISKWvY

¥¥0102
€4070)
240100
140702
040702
€4100d
2Y¥700d
T4700d
0Y¥102d

e sa sm ose o

H3S108
AOT4HS
974438

0420
¥320
£420
1420
0420

v3izo
1320
G320
¥3¢0

8320
£320
9320
6320
¥320
€320
2320
1320
0320

4920
31920
8z0

212

Appendix B

1 - SSdJppe aurinods ailkg Ind: 9t £0$ =
Gveos =

81fq mo| ssaJsppe saygyng:! Pv€0$ =

01308 §)01 1Sl 4O SNjeIS! epeos =

8p0D puBHWO) ¢ reos =

(Jaqunu aatdp) Jaqunu a8oLasg! 17£0¢ a
(eauy 9301 = 44) Jaqunu xapuL Ja|puey! 0veos =
ove0$ =

80€0¢ =

1 931AQ xny puewwo)d! voE£O0$ =

60e0$ =

81Aq mo| pasaasued} aq 031 sa8j1hq 4o Jaqunp: 80203 =
$3}LUN Puods3dsS] Ul N0 BUL] BILABQ!: 90£0$ =
GOEO0$ =

mo| sjurod syyng eled: poeo$ =

uanjaJd sniers/adhf puewwo): £0£0$ =
puewwod sng! 2080% =

dequnu Lun: T10€08% =

Jsqunu “Q°f SNQ [JLun |eJdeydraadt 00g0$ - =
N30|q {0J3U0D 83LAB(Q: 00€£0$ =

(g15)

$}201Q [0J3U0D 3dLABQ

squswubLsse yyy 8aJuyy albey

eeug Aq paJsesad (1 1IND) Butbed uoy Beyy doissquels! 44208
10UIZ NON 41 STIND SAVIdSIO :9Y14 A¥IdSIG: 34208

paeogkey Joy} a|geLs4ea (eqo|6: 24208 =

J830BJRYD LOSBIY! B4Z0%

14dII
Hv8J1
vedl
ViSOI
W0J21
aNaoarT
GIHII

89301

2xnva
Xnvda
IHLASO
01LA80
OTWILd
IHiNgd
014180
Sivisa
aNWOIa
LINNG
JIA30Q
80d

9v14SS
v14d4Sa

HJ
HYHIVLY

9vEeo
GvED
12441]
EVED
evED
1VEQ
0veo
oveo

0€0
VOED
60€0
80ED
90ED
G0¢co
¥0E0
£0ED
¢0€0
T0€0
00€E0
00€0

1420
1120
2120
8420

213

Appendix B

(A‘x) -> oud 0934 @V01 9NILVOT4® 68003

A¥¥VYD® TH4 / 0¥d -> 0¥d’ 82aa¢$

AHYYD® THI « 0¥4 -> 0¥d! a0vas

AYYYD® THd + 0H4 -> 0H4! 99vas$

AY¥YD ‘T¥4 - Q¥4 -> 04’ 09vas

AYYYD ‘T+0HS'0H4 <- 0¥ MHIDILNI <- dd! azedas
0Y4<-T+0Y¥4 084 NI (8SW ‘8S7) 4444%-0

dd <- Y¥I9ILNI® vveas

AYYYI ‘1+004°404 <- Oud 1108V <- dd! 9380$
AHYVD ‘XIDJ Q¥4 <- XID + 3J4NENI

(d4) INIOd ONILYOTd <- II0SV! 0080$

HOUY3 <= L3S AHYVYD ‘HOHY¥] ON <= YVITI AHUYI NIHL G3ISN SI AWYVD 41

SINILNOY WOY INIOd 9NILVOTd

(**-qutod Buirjeo(y Joy 13dadxa)
(48sn 8ay3 4oy 4450 NJy3 08Y0) ° 08YO$

"

(se3fq 1e1) Joyang 8338sse)’ Q4£0$ =
sjuawubLssy wey uanoy abeyd

(saj3fg adeds 12)
(se3fq gv) 4844nq s83uLsd: 0I£0$

salhg ededs anoy! IPE0S =

aveo0g =

87AQ 3sJLy uoLrjewdopur AuerLxny: YbEO0S =
6v€0% =

81Aq mo| yrbus| Jayyng! gveus =

LYEO0S =

40014
AIGd
g
aavd
ansd

Id4d

dil
JSvd

ddv

vayvsan

4N8SvI

4N9NYd

YdSII
ZXval
1XviI
H1801
11831
HidJI

6800
g824q
aava
99va
09va
Qzeda

vveda
9380

008d

08Y0

Q4€0

0J€0

dveo
8V €0
YrEeo
6¥£0
8vE0
LYED

214

Appendix B

XIANI ENdNTI ENIHHND:
1934 d4°
0934 d4'

24008 =
0300% =
¥000$% =

(6317v2 3¥v SINILNOY
"d"4 41 AINO G3033IN) 39vd OHIZ SINILNOY ENIOd ONILVO14

AdyyD (0ud)100¥3UYNOS -> 0y4!

AHYYD (oud)INLY -> oy
AYY¥YI (oud)s00 -> pua!
A¥YYD *930<=9 ‘SAVY <= 0=974930 (OU4)NIS -> Oy4'

$3901Y14YD JISvE 3HL NI My

AY¥Y¥Y) (odd)o19071 -> ou4!
Adyyd (3)01907 7 (0¥4)01907 = (oH4)N1 -> oud!
AUYYD OYdas0T -> Q¥4!
ABEYD ((3)01907 « 0U4)0TdXT = O¥dwsd -> QU4
7 0Y4
T + 33¥930 = SINIIDI4430D 40 # 20V
9YVAId <- (0)v " (1-N)v ‘(N)v = (A'X) :LNdNI

Addv) (TexZa (I)v) (0 QL N = I)WNS = (2)d -> oud!
o4 ~> THJ:
0d4 ->(ulde14)
0¥d -> (A'X) 0534 IYOLS ONILVO1d
(4ld14) -> 14
(A'x) -> 144
(¥id13) -> oud

1939% =
erags =
£.09% .

1809% =

INIMOTI04 3HL

1a3as
a210% =
22003
020as$

h

0vaas =
9q40as$ =
avaas =
Lvaas =
J6aas =
8600$ =
asaas =

X12
12-F]
044

H0s
NViY
S02

NIS

01901
9071
01dX3
dX3

AN
INOW4
d0(S4
H0LS4
d1014
yigi4
d0G14

<400
0300
¥0a00

1939
£vag
£L09

18409

1034
4330
23040
03aa

0vaa
9900
avaa
ivaa
6404
8600
a84aa

215

Appendix B

AREW
1130
1133
RRER
RREN]
RREN
RREN
RRENR

Wy
Wy
WvY
Wy
WYy
Wyd
Wy
Wyd

NI
NI
NI
NI
NI
NI
NI
NI

{22-0
122-0
L22-0
L£2e¢-0
122-0
Lee-o
L22-0
L£22-0

*NOTLdIHIS3Q

YIGWNN ENTOd ONILYOTd SHISN OL SIN1Od: 24008

£700vd<--£10d" L+A%0d =

970avYd<--910d" 9+A0d =
§10Qvd<--640d" G+APN0d =
$700Yd<--¥L04d" ¥+A3A0d =
€700Yd<--£40d: €+A0d =
2100vd<--2£0d’ 2+AINN0d =
1700vd<--140d" I+A3%0d =
07aavd<--0L0d* 0+A3%0d =
TNOILOVY JINV1GA! 0602a$ =

SOINOWINW N33T702

SINIWNDYY VIIWANATOC! 09%+14087
Y¥344N8 3INIT: 0850%

(4490 0% 3160)

WYY dZ-NON .SINILNOY ENIOd ONILVOTd

$334930 = 9 ‘SNvVIQVY = O 24008

¥4344N9 LNdNI ANIT S.Y¥3SN OL SINIOM: £400% =

L£10d
91ad
G10d
¥1i0d
£10d
¢10d
110d
010d
ADN0d

cs e sm se sm em em 4m oem e s

94vAd
44N87

didild
9740wy
14NENI

£0¢d
902Q
G0ed
¥0z0
€020
202da
1020
0020
00¢a

0350
0860

2400
8400
€100

Appendix B

[01S1-->TL2%SS TLINS<--TEINSS
(:32 40 :S N340 A9 €312344Y) NIDYI<--XSWICd:

[o15]-->1n0Y¥3s INON '
[o1s1-->s34xs INON!
fa1s]-->1L20nv INON':
p8qgoJ43s!

Lt

G+V¥ILD
Y+VILD
€+YILD
2+YILD
T+VILD
0+vILD

0000%

GL+AN0d
Y1+AIN0d
€1+AIN0d
TT+ADN0d
0T+A3%0d
6+A3%0d
8+AIN0d
L£AN0d
9+A3%0d
G+AIN04
F+AN0d
£+A3%0d
¢+AIN0d
T+A3N0d
0+A30d

GT+A3IN0d
¥ T+A3%0d
ET+ADIOM

e/u
11+ANOd
0T+AINOd
6+A3%0d
8+A3IN0d

TWSOdH
OWSOdH
€d4S0dH
¢dSO0dH
14S0dH
04S0dH

VILd

TLMNS
URTED!
IREEN
0910d
SAUNS
YINWILS
13anvy
yaany
yiany
£20nY
£4any
2Jany
24anv
1200V
tdanv

IVESHS
1S0dI
NIY¥3S

09i0d
WOGONVY
300383
10477V

G000
vooa
£000
20040
1000
6ooa
0000

31020
1020
aoza
8020
voea
6020
8020
L0e@
8020
G020
v0ea
£020Q
2020
1020
00¢a

4024
31020
aoza

8020
voed
6020
f02d

217

Appendix B

UIVIdS 140 NinL

300N LOVHLEY HLIM

T0SNOJI<--80%:

N°DL3?

OWd103<--0¥700d"

£+VILD
S+YILD
0+VILD

1E+VILD
0E+VILD
62+VILD
82+VILD
L2+VILD
9Z+VILD
G¢+VILD
Ye+vILC
£2+VILD
22+VYILD
T24V1LD
02+VILD
6T+VvIlD

8T+VILD
LT+VILD
9T+VILD
GT+VILD
YI+VILD
ET+VILD
SL+VILD
T1+VILD
0T+VILD
6+VILD
8+VILD
L+Y1LD
9+Vv1LD

ddEW
ddZK
dd0W

JAGSNOD
4IJLIH
1LIVHD
AVT3I0A

401Yd

A9702
£447102
¢4d102
144700
044700
EWdT10D
2Wd100
TWd10D

0Wd10D

Wivd9
CCELEE]
<ddvyd
144vy9
0d4vy9

W3IZIS
£d43721S
¢d3zIs
143718
043718
EWSOdH
ZWSOdH

€000
2000
000a@

4100
3100
aiod
100
8100
v10Q
6100
8100
(100
9100
st0a0
y10d
€100

2100
1100
otog
4000
1000
aooa
2000
8000
vooa
6000
8000
£00d
9004

218

Appendix B

H0

[0

40

[0

[0

'S N340

*S N340

*S N340

*S N340

*S N340

NO

NO

NO

NO

NO

SVEBHJ-~>3SYaHD !

H1S1aS-->HiS1710!
114870S-->74S17¢°
LIVHI-->T1JVHD!

TLIWAS-->T1LIVIG

313!
TOIHLS<--091YlL*

6+JI1NY
L+JILNY
G+JI11NY
v+I1ANY

E+JILNY
¢+JILNY
T+JI1NY

0+JIINY
oovas

02+VILD
6T+VILD
8T+VILD
LT+VILD
9T+VvVILD
ST+VIlD
vi+VILD
ET4VILD
¢T+VILD
TT+VI1D
0T+VILD
6+VILD
84VI1D
L+VILD
94VIl)
S+VILD
v+VILD

ASYEBHI)
ISVaid
T0UIASA
TOHISH

HiSIG
11S17a
T1¥YHD

1LIVNWa
JIINY
wd
€91l
¢9IY41
191dl
0911
1dCd
1d2d
1dTd
140d
1dENW
1dZKW
I1dTH
140K
4d€d
4ded
ddid
4d0d

60vd
L0va
S0va
vova

£ova

aova

1ova

oova
00va

vioa
€1oa
Ztoa
1o
oroad
4000
jooa
aooa
3000
9000
vooa
6000
8000
1000
900aQ
S000
v00aQ

219

Appéndix B

CAgALIS] aNv NO ¥3MOd

NOILVZITYILINI 104100 LNINI TYIYW3S: G9¥3¢
SNOTLYINDTIVD Nvi8 TYITIHIA LIX3® 29v1%
SNOILYINDTYD YNv18 TVIILU3A WILSAS: e AR

ANVIBA padajyeq:
INVIGA @jetpowuw]:
g

SNt WD O~

L4
£
4
T Jauwl)

jyoey 03 JOII8A jO

Jawt}/J40328A JO §ST -~ A
JawL} /403084 4O gSW - X
St @ouanbas | (€3 8yl ‘AGALIS 01 1%98dSad yYIim

auLinod sJauwty walshs 3ast IG5y 3¢
autinod ndyno 3ndur (erJas: 651§
31138SVD: ovv3as

YALNIYd: 0€v3$

QUVOgAIN: 0238

NIJY¥IS NOISIAITAL! 0T¥3s

01103 oov3$

ST+JIUNY

Q3a0d1s: ST+JILlNY
O0p-->NIINWN: VI+J1LNY
ET+JI1NY

CU+JILNY

TT+JI1NY

OT+JILNY

ANIOIS
T8ALIX
ABASAS

43013S
WWI13S
GUWL3S
PUWL3S
EUWLIS
CUW13S
TUWLIS
#-v!

ABALIS
AOIS
ALISY)
AINIHd
AQBADY
ANIYHIS
AY1IQ3
LSINN
SIYIWN
N3IWN
AN3d
HN3d
INNQOJA
INASH

S9t3
29¥3
46¥3

000
9000
5000
v000
€000
2000
1000

Jev3
6St3
ov¥3
0ev3
0Zv3
0T¢3
003

100
40¢a
0v0
aovd
Jo0va
: (1 01]
vova

220

Appendix B

For Further Reference

Apple: What’s Where In The Apple, William Luebbert, Micro Ink,
Inc., 34 Chelmsford St., Chelmsford, MA 01824, 1981.

Atari: Mapping The Atar1, Ian Chadwick, COMPUTE! Books,
P.O. Box 5406, Greensboro, NC 27403, 1983. (This covers the
operating system and provides lengthy cross-referenced
explanations of Atari’s memory addresses.)

Atari: The Atart BASIC Sourcebook, Bill Wilkinson, COMPUTE! Books,
P.O. Box 5406, Greensboro, NC 27403, 1983. (Complete
commented source code of Atari BASIC, with explanatory text.)

221

Appendix C

Simple Assembler
Notes On Assembling

This program is written in BASIC because there is no reason not to.
Since the program runs quickly enough and there is some
complicated arithmetic involved, BASIC is the language of choice.
There are assemblers in ML which make two “‘passes’” through the
source code and do need the extra speed. But this is a simple, ““one-
pass’’ assembler. The virtue of simplicity is that you can easily and
quickly make small ML routines, test them, and debug them. An
added bonus is that modifying the Simple Assembler is easy in
BASIC. We’ll see how you can customize it in a minute.

The assembler accepts your opcodes and their arguments,
translates them into the correct numeric values, and POKEs them into
RAM memory. You have a choice between using hex or decimal
during your ML programming on the Simple Assembler (SA). If you
remove line 10, the SA will accept only decimal numbers as
arguments, will print all addresses in decimal, and will display the
object code (the numbers it is POKEing) in decimal. Leaving line 10 in
the program will result in the SA accepting, addressing, and
displaying only hexadecimal numbers.

The circumflex in lines 4010 and 5030 — the character following
the number 16 — means ““to the power of'* and generally appears on
computer keyboards as an arrow pointing up. Since this is nota
complicated assembler, a decision had to be made concerning
whether or not to include two of the conventions which have been
traditional in ML programming. They were left out because it saves
programming time to avoid them and they are unnecessary.

The first one is the dollar sign ($). When an assembler can accept
either hex or decimal simultaneously it must have a way to tell, if you
type in ““10”’, whether you mean decimal 10 or hex 10 (decimal 16).
The convention requires that you write decimal ten as “10"” and hex
as '‘$10."'However, this can quickly become a burden. In the SA, you
let it know which kinds of numbers you are using by setting H in line
ten. After that, just type in the numbers. No $ is used. The second
convention that is not included in the SA is the use of the comma.
Again, there is no particular reason to use commas, but it has been
the tradition to include them for certain addressing modes. They, too,
can become burdensome when you are programming. Also, each line

223

Appendix C

of your ML program is brought into the computer via the INPUT
statement in line 240. Microsoft BASIC’s INPUT statement dislikes
seeing commas. So, it is expedient in several ways to drop the comma
convention. There is just no reason to use them.

One additional note. The SA does not accept the indirect jump:
JMP ($0FFF). You could add it if you wish, but because of a bug in the
6502, it is far safer to avoid it.

Here is alist of the traditional conventions used in most
assemblers compared to the simplified conventions of the SA. Notice
that each addressing mode has its own appearance, its own
punctuation. This is how an assembler knows which addressing
mode you mean to use.

Spaces are important.

Addressing Mode Simple Assembler Traditional
Conventions
Immediate LDA #15 LDA #$15
Absolute LDA 1500 LDA $1500
Zero Page LDA 15 LDA $15
(sometimes
LDA *$15)
Accumulator ASL ASL A
Zero Page, X LDA 15X LDA $15,X
Zero Page, Y LDX 15Y LDX$15.Y
Absolute, X LDA 1500X LDA $1500,X
Absolute, Y LDA 1500Y LDA $1500,Y
Indexed Indirect LDA (15X) LDA ($15,X)
Indirect Indexed LDA (15)Y LDA ($15),Y

Customizing The Simple Assembler

An assembler is only supposed to get your typed opcodes and their
arguments, translate them into the right numbers, and put them in
memory for you. Nevertheless, the assembler is there for your benefit
and it is a computer program. It can be taught to do whatever else
would assist you in your ML programming. This is where ““pseudo-
ops’’ come in. They are not part of the 6502 ML instruction set. They
are false opcodes. When you enter one of these, the assembler
doesn’t put it into 6502 and POKE it. It can’t. It does something for
you like figure out the hex equivalent of a decimal number or
whatever.

The SA has four built-in pseudo-ops and you can add others.
Following the input of the opcode (line 240) there is a short quiz. The
first question the computer asks itself is: “did they type the word
‘FORWARD?"" If so, it means that you are planning to branch
forward, but you don’t yet know how far. It will make a mental note
of this and later, when you type in another pseudo-op, ""'RESOLVE, "

224

Appendix C

it will go back and put in the correct address for the branch. Also. you
can hand-POKE in any number in any address by typing the pseudo-
op “POKE”. And, when you are finished with a program, type
"END”” and the assembler will quit, reporting the starting and
ending addresses of your program in decimal.

A full-featured assembler can include dozens of pseudo-ops.
Let’s briefly examine several popular ones to see if there are some
that you might want to add to the SA. Then we’ll add a hex/decimal
pseudo-op to the SA to show how it’s done.

BA — Begin Assembly. The SA asks you directly for the starting
address (variable SA$). BA signifies the location in RAM memory
where you want the object code to start. Example: BA $0400

BY — Bytes. This is for the creation of data tables. The BY is
followed by numbers or text characters which are POKEd into
memory at the current address. You put these BYtes at the start or
end of a program (it could result in havoc if it were in the middle of a
program; they would likely be meaningless as instructions). Example:
BY 46 46 48 42 12 11or BY “THIS IS A MESSAGE"

DE — Define alabel. Labels require a two-pass assembler that
goes through the source code first to create a table of labels which
would look something like this:

START 1500
LETTER.A 65
PRINTROUTINE 64422

Then, the second time through your source code, the assembler
would replace all the labels with their correct values. This is called
“resolving’’ the labels. DE is usually part of the initialization process.
A number of the example programs in this book start off with a series
of DE pseudo-ops, telling the assembler the meaning of various
important labels that will be used later in the source code instead of
literal numbers. Example: START DE 1500 or LETTER. A DE 65.

EN — The end of the source program. Stop assembling at this
point. The SA uses END.

MC — Move code. This interesting pseudo-op takes care of a
problem that sometimes comes up when you want your object code
to be ultimately used in an address that is now being used by the
assembler itself or cannot be directly POKEJ at this time with the
object code. For instance, if your computer’s RAM memory starts at
address 2048 like the Commodore 64, and you want to put your final
ML object code there, what do you do? If the SA was told to start
assembly there, it would begin to nibble away at itself. It’s in RAM
starting at 2048.

225

Appendix C

To allow you to store object code elsewhere, but have it assembled
appropriately for final use in 2048, you could instruct the assembler:

MC 25000 (temporarily store it here)

BA 2048 (but make internal JMPs, JSRs, and table references

correct for this starting address)

You can add your own pseudo-ops to the SA following line 240.
Many times when you are working along in hex you will want to
know the decimal equivalent of a number and vice versa. It’s nice to
be able to just ask for the translation right during assembling. The
answer is printed on the screen and you continue on with your
programming. The assembler will do nothing to the ML during all
this; it’s just giving you an answer.

If you are working in the hex mode and want a decimal number,
just type DECIMAL and the computer will accept a hex number from
you and give back its decimal equivalent. Conversely, type HEX and
give a decimal number for that translation.

To include this pseudo-op in the SA, add the following lines:

Program C-1. Adding The Conversion Pseudo-op.

245 IFMNS="HEX"THENGOTO7000
246 IFMNS="DECIMAL"THENGOTO7200

7000 PRINT"ENTER DECIMAIL NUMBER": :INPUTDE:IFD
E>255THENSZ=3:GOT07020

7010 sz=1

7020 GOSUB49@%:PRINT" =8
"HS$:G0TO230

7200 PRINT"ENTER HEX NUMBER"; : INPUTHS

7210 SX=LEN{HS):BKS$="@00":HS=LEFTS (BKS$,4~SX)+
HS

7220 GOSUB50@@:PRINT" = "
DE:GOTO230

The Simple Assembler has a few error messages that it will print
when it can’t make sense out of something. The primary
responsibility for finding errors, however, is yours. You can create
and save ML routines and then look at them with the Disassembler to
see if they look liké they should. SA takes up about 4.5K so it will not
run on an unexpanded VIC. A 3K RAM expansion will provide 2000
bytes for storage of your ML routines.

226

Appendix C

Program C-2. Simple Assembler (VIC, PET, Apple, 64 Version).

10 H=1:REM IF H = @ THEN ASSEMBLY IS IN DEC

IMAL

5¢ HES$S="@123456789ABCDEF":82=1:70$="0008"

100

110
129
122
124
126
140
150
155
160
165
179
175
177
179
180
185
189
190
195
- 200

210
215
220
230

235
249

241
242
243

244

PRINT" SIMPLE ASSEMBLER CONVENTIONS
DIMMS (56), TY(56),0P(56)

FORI=1TO56: READMS (1)
ROPS=MIDS(MS(1),4,1):TY(I)=VAL(ROPS)
OPS=RIGHTS(MS(1),3):0P(1)=VAL(OPS)

M$ (1)=LEFTS (M$(1),3)

NEXTI: PRINT

PRINT"IMMEDIATE LDA #15
PRINT"ABSOLUTE LDA 1500
PRINT"ZERO PAGE LDA 15
PRINT"ACCUMULATOR ASL
PRINT"INDIRECT X LDA (15X)
PRINT"INDIRECT Y oA (15)Y
PRINT"ZERO PAGE X LDA 15X
PRINT"ZERO PAGE Y LDX 15Y
PRINT"ABSOLUTE X LDA 1500X
PRINT"ABSOLUTE Y LDA 1500Y
PRINT: PRINT" ENTER ALL NUMBERS IN ";

IFH=1 THENPRINT"HEX":GOTO0200
PRINT"DECIMAL"

PRINT:PRINT"PLEASE INPUT STARTING ADDRES
S FOR ML PROGRAM" : INPUT SAS
IFH=1THENHS=SAS$: GOSUB50@0 : SA=DE : GOT0220
SA=VAL(SAS)

TA=SA:PRINT" {CLEAR} ":REM CLEAR THE SCREE
N
IFH=1THENDE=SA:S%=3:GOSUB400@ :PRINTHS; : G
0T0249

PRINTSA" ";

INPUTMNS : PRINT" {UP}"SPC(28); :REM GO UP O
NE LINE AND OVER 20 SPACES

REM ADD NEW PSEUDO-OPS HERE

IFRIGHTS (MN$, 7)="FORWARD"THENFB=SA
IFRIGHTS (MNS, 7)="RESOLVE"THENFR=SA-FB: PO
KEFB+1, FR~2:PRINT" OK":G0T0230

IFRIGHTS (MN$, 4)="POKE"THENPRINT"ADDR, NUM
BER(DEC) "; : INPUTADR, NUM: POKEADR, NUM
:GOTO230

227

Appendix C

250

260
2790
280
290
300
301
305
310
320
330
340

350
360
370
380

390
400
410
420
430

440

450
460
478
480
490
500
510
520
530
540
550
560
570
580
590
600

228

IFMNS$="END"THENPRINT: PRINT" PROGRAM
IS FROM"TA"TO"SA:END
=LEN(MNS$) : L$=LEFTS$ (MNS, 3)

FORI=1T056:IFLS$=MS$ (I)THEN300

NEXTI

GOTO85@

REM PRIMARY OPCODE CATEGORIES

TY=TY(I):0P=0P(I)

IFFB=SATHENTN=0:GOTO2010

IFTY=0THENGOTO1000

IFTY=3THENTY=1: IFL=3THENOP=0P+8 : GOTO1000

R$S=RIGHTS (MN$, L-4): IFH=1THENGOSUB6J@0

LRS=LEFTS$ (R$,1):LL=LEN(RS): IFLRS="#"THEN

489

IFLRS="("THEN520

IFTY=8THEN6QJ

IFTY=3THENOP=0P+8:GOTO1 000

IFRIGHTS$ (RS,1)="X"ORRIGHTS(RS,1)="Y"THEN

630

IFLEFTS (LS, 1)="J"THENB20

TN=VAL(RS$): IFTN>255THEN4 30

IFTY=10RTY=30RTY=40RTY=5THENOP=0P+4

GOTO2000

H%=TN/256:L%=TN=-256*H%: IFTY=20RTY=7THENO

P=0P+8:GOT0470

IFTY=10RTY=30RTY=40RTY=5THENOP=0P+12:;GOT

0478

IFTY=60RTY=9THEN4 70

GOTO850

GCTO3000

TN=VAL(RIGHTS (R$,LL~-1))

IFTY=1THENOP=0P+8:GOTO2000

IFTY=40RTY=5THENGOTO 2009

GOTO858

IFRIGHTS (R$, 2)=")Y"THEN540

IFRIGHTS (RS, 2)="X)"THEN57@

TN=VAL(MID$ (RS, 2,LL~3))

IFTY=1THENOP=0P+16 :GOT02000

GOTO850

TN=VAL(MIDS$ (RS, 2,LL-3))

IFTY=1THENGOTO2000

GOTO850

TN=VAL(RS$) : TN=TN~SA~2: IFTN<~1280RTN>127T

HENPRINT"TOO FAR ";:GOTOB50

Appendix C

610 IFTN<@THENTN=TN+256

620 GOTO2080

630 IFRIGHTS (RS, 2)=")Y"THEN540

64@ IFRIGHTS (RS, 1)="X"THEN720

650 REM *ZERO Y

660 TN=VAL(LEFTS$(RS$,LL-1)):IFTN>255THEN680D

678 IFTY=20RTY=5THEN730

675 IFTY=1THEN760

680 GOSUB77@:I1FTY=1THENOP=0P+24:GOTO710

690 IFTY=5THENOP=0P+28:GOT0714

788 GOTO850

710 GOTO3080

720 TN=VAL{LEFTS(RS$,LL-1)):IFTN>255THENGOSUB
773 :GOTOT780

730 IFTY=2THENOP=0P+16:G0OT0O76¢

7409 IFTY=10RTY=30RTY=5THENOP=0P+20:GOTO760

758 GOTOBSQ

760 GOTO2000

778 H$=TN/256:L%=TN-256*H%: RETURN

780 IFTY=2THENOP=0P+24:GOT0818

79¢ IFTY=10RTY=30RTY=5THENOP=0P+28:GOTO810

8003 GOTO850

810 GOTO3000

820 TN=VAL(RS)

830 GOSUB774

840 GOTO71@

850 PRINT" {REV} ERROR ":GOT0230

1000 REM 1 BYTE INSTRUCTIONS

1019 POKESA,OP:SA=SA+1:IFH=1THEN 1030

1820 PRINTOP:GOTO238

1030 DE = OP:GOSUB40@0:PRINTHS : GOTO230

20080 REM 2 BYTE INSTRUCTIONS

2085 IFTN>256THENPRINT" INCORRECT ARGUMENT. (
#5 IN HEX IS #05)":G0OT0230

2010 POKESA,OP:POKESA+1l,TN:SA=SA+2:IFH=1THEN2
330

2020 PRINTOP;TN:GOT0230

2030 DE = OP:GOSUB40@@:PRINTHS" ":

2040 DE = TN:GOSUB40@0 :PRINTHS :GOT0O230

3000 REM 3 BYTE INSTRUCTIONS

3010 POKESA,OP:POKESA+1,L%:POKESA+2,H%:SA=SA+
3:IFH=1THEN3@30

3%2@ PRINTOP;L%:H%:G0T0230

3030 DE = OP:GOSUB40@@ :PRINTHS" ";

229

Appendix C

3048 DE L% :GOSUB4Q6Bd : PRINTHS" ";

3050 DE H% : GOSUB40@0 ; PRINTHS : GOTO230

4@0% REM DECIMAL TO HEX (DE TO HS)

4010 HS="":FORM=SZTOOJSTEP-1:N%$=DE/ (16"M) : DE=D
E~-N%$*16"M:H$=HS+MIDS (HES,N%+1,1)

4020 NEXT:SZ=1:RETURN

5000 REM HEX TO DECIMAL (H$ TO DE)

‘5¢18 D=@:0=3:FORM=1T04: FORW=@BTO15: IFMID$(H$ M

, 1)=MIDS(HES,W+1,1)THEN5@30Q

'5020 NEXTW

‘5830 D1=W*(16"(Q)):D=D+D1:0=0~1:NEXTM:DE=INT(

D) : RETURN

6000 REM ACCEPT HEX OPCODE INPUT AND TRANSLAT
E IT TO DECIMAL

6010 IFLEFTS(RS,1)="#"THENHS="@0"+RIGHTS (RS, 2
) :GOSUB5@0@ : R$="#"+STRS (DE) : RETURN

6020 LS=LEN(R$):AZS=LEFTS$(RS$,1):ZAS$=MIDS (RS, L
S,1):IFAZS<>" ("THEN6G50

6030 IFzZAS="Y"THENHS="00"+MIDS(RS,2,2):GOSUBS
@00 :RS="("+STRS(DE)+")Y" : RETURN

6040 IFZAS=")"THENHS$="00"+MIDS(RS, 2,2):GOSUBS
OPF:RS="("+STRS(DE)+"X) " : RETURN

6050 IFZAS="X"ORZAS$="Y"THEN6Q70

6060 HS=LEFTS$(Z0$, 4-LS)+RS :GOSUB50@J : RS=STRS (
DE) : RETURN

6070 IFLS=S5THENHS=LEFTS$(RS,4):G0T06090

6080 HS="Q@O"+LEFTS (RS, 2)

6090 GOSUBS@O0:R$=STRS(DE)+ZAS : RETURN

20000 DATAADC1097,AND1@33,ASL3002,BCC8144,
BCS8176,BEQ8240,BIT7@36, BMI8WY48

20010 DATABNES8208, BPL8G16, BRKOYAY , BVCBJI87, BVSS8
112,CLC0O024,CLDO216,CLIAA88

200208 DATACLV@184,CMP1193,CPX4224,CPY4192,DEC2
198, DEX@2902,DEYJ136,EOR1065

20030 DATAINC223¢,INX@232,INYJ208,IMP6076,ISRO
#32,LDAl161,LDX5162,LDY5160

20049 DATALSR3066,NOPY234,0RA1801,PHAGD72, PHPOD
398, PLAG 104, PLPE043, ROL3G34

20058 DATAROR3098,RTIOE64,RTSAVI96,SBC1225,SECT
#56,SED@248,SEI10120@, STA1129

20060 DATASTX2134,STY2132,TAX@173, TAYD168,TSXD
186, TXA0138, TXSO154, TYAGL152

Appendix B

Meup JOy bely (1LY £920%

(Kex taeyy Agq pa(B6Boy) Be|y ospta assanug! 9820%
’ dew 719 jJe9s aut| [edLboT: 2820% =
tery adeosy! Zvzos =

("238) 1x83 4oy |ooptLo pue moupjo! ggz0$ =

OSW M3U OJUL 1J3AUOD S| 00y 620 =

X3put Ixaf:’ £620% =

$40{00 9x3f! 16208 =

SJOMOd X8 ! 0620% =

pajuawwod ad4am Burmo| |0y sy3 ‘saigersea §Q wopues Kuey

£820% =
9820% =
G820% =
¥820% =

d399THL NITLSAOL

€820% =
28209 =
18208 =
0820% =
11208 =
11208 =
atezos =
22208 =

4399144 3700vd

914714
9VI4ANT
dYW901
974083
gloLxt
JISHEXL
X3IGNIL
1004£X1L
MOHEX L

€914LS
¢O14LS
1914dLS
09141LS

£91dtd
99 [dLd
GoI¥Ld
¥91did
£914id
¢9Tutd
191did
097dtd

1820
98¢0
2820
V2o
9620
¥6¢0
£620
1620
0620

{820
9820
§8¢0
¥820

€820
2820
1820
0gzo
4420
3£20
aLeo
JL20

211

Appendix B

(MvyQ) vive 1114 LH9LY: g420% =
WYY H3LSI93Y SYSBHI: ¥420% =

WYY ¥ILSIDIY TLIVHD: £420% =
Aeap Aoy! 1120% =
(NO ¥OSHMD = 00) LIGIHNI ¥AS¥NI' 0420% =

¥314n8 SNEVIS! v3208

AHOWIW H¥3ISN 3T9VTIVAV 0 WOLIO8' £320%
AYOWIW ¥ISN IISYTIVAY 40 dOL' §320%
(AINO 3£A8 IH) 37IS Wv¥: ¥320%

[I 1

S$378YI YA Y8019

¥ ¥0103! 8220% =

€ 40102 £320% =

2 40102 9320% =

1 ¥0102¢ 6J20% =

0 ¥0703! ¥220¢% =

401700 ed* €220% =

40102 24° cJ20% =

010D 1d: 12208 =

40702 0d: 0020% =

S¥0102

*311€S § 'WJON $Z :u88JIS JO wolroegl 1920% =
Y301 1iLys! 3920% =

§84n330 (042§ JL 18S' A920$ =

Lyaitd
SY8HD
LIVHD

T130AD

HNISHO

LVESAQ

OTWIW
dOLIWIW
ZISKWvY

¥¥0102
€4070)
240100
140702
040702
€4100d
2Y¥700d
T4700d
0Y¥102d

e sa sm ose o

H3S108
AOT4HS
974438

0420
¥320
£420
1420
0420

v3izo
1320
G320
¥3¢0

8320
£320
9320
6320
¥320
€320
2320
1320
0320

4920
31920
8z0

212

Appendix B

1 - SSdJppe aurinods ailkg Ind: 9t £0$ =
Gveos =

81fq mo| ssaJsppe saygyng:! Pv€0$ =

01308 §)01 1Sl 4O SNjeIS! epeos =

8p0D puBHWO) ¢ reos =

(Jaqunu aatdp) Jaqunu a8oLasg! 17£0¢ a
(eauy 9301 = 44) Jaqunu xapuL Ja|puey! 0veos =
ove0$ =

80€0¢ =

1 931AQ xny puewwo)d! voE£O0$ =

60e0$ =

81Aq mo| pasaasued} aq 031 sa8j1hq 4o Jaqunp: 80203 =
$3}LUN Puods3dsS] Ul N0 BUL] BILABQ!: 90£0$ =
GOEO0$ =

mo| sjurod syyng eled: poeo$ =

uanjaJd sniers/adhf puewwo): £0£0$ =
puewwod sng! 2080% =

dequnu Lun: T10€08% =

Jsqunu “Q°f SNQ [JLun |eJdeydraadt 00g0$ - =
N30|q {0J3U0D 83LAB(Q: 00€£0$ =

(g15)

$}201Q [0J3U0D 3dLABQ

squswubLsse yyy 8aJuyy albey

eeug Aq paJsesad (1 1IND) Butbed uoy Beyy doissquels! 44208
10UIZ NON 41 STIND SAVIdSIO :9Y14 A¥IdSIG: 34208

paeogkey Joy} a|geLs4ea (eqo|6: 24208 =

J830BJRYD LOSBIY! B4Z0%

14dII
Hv8J1
vedl
ViSOI
W0J21
aNaoarT
GIHII

89301

2xnva
Xnvda
IHLASO
01LA80
OTWILd
IHiNgd
014180
Sivisa
aNWOIa
LINNG
JIA30Q
80d

9v14SS
v14d4Sa

HJ
HYHIVLY

9vEeo
GvED
12441]
EVED
evED
1VEQ
0veo
oveo

0€0
VOED
60€0
80ED
90ED
G0¢co
¥0E0
£0ED
¢0€0
T0€0
00€E0
00€0

1420
1120
2120
8420

213

Appendix B

(A‘x) -> oud 0934 @V01 9NILVOT4® 68003

A¥¥VYD® TH4 / 0¥d -> 0¥d’ 82aa¢$

AHYYD® THI « 0¥4 -> 0¥d! a0vas

AYYYD® THd + 0H4 -> 0H4! 99vas$

AY¥YD ‘T¥4 - Q¥4 -> 04’ 09vas

AYYYD ‘T+0HS'0H4 <- 0¥ MHIDILNI <- dd! azedas
0Y4<-T+0Y¥4 084 NI (8SW ‘8S7) 4444%-0

dd <- Y¥I9ILNI® vveas

AYYYI ‘1+004°404 <- Oud 1108V <- dd! 9380$
AHYVD ‘XIDJ Q¥4 <- XID + 3J4NENI

(d4) INIOd ONILYOTd <- II0SV! 0080$

HOUY3 <= L3S AHYVYD ‘HOHY¥] ON <= YVITI AHUYI NIHL G3ISN SI AWYVD 41

SINILNOY WOY INIOd 9NILVOTd

(**-qutod Buirjeo(y Joy 13dadxa)
(48sn 8ay3 4oy 4450 NJy3 08Y0) ° 08YO$

"

(se3fq 1e1) Joyang 8338sse)’ Q4£0$ =
sjuawubLssy wey uanoy abeyd

(saj3fg adeds 12)
(se3fq gv) 4844nq s83uLsd: 0I£0$

salhg ededs anoy! IPE0S =

aveo0g =

87AQ 3sJLy uoLrjewdopur AuerLxny: YbEO0S =
6v€0% =

81Aq mo| yrbus| Jayyng! gveus =

LYEO0S =

40014
AIGd
g
aavd
ansd

Id4d

dil
JSvd

ddv

vayvsan

4N8SvI

4N9NYd

YdSII
ZXval
1XviI
H1801
11831
HidJI

6800
g824q
aava
99va
09va
Qzeda

vveda
9380

008d

08Y0

Q4€0

0J€0

dveo
8V €0
YrEeo
6¥£0
8vE0
LYED

214

Appendix B

XIANI ENdNTI ENIHHND:
1934 d4°
0934 d4'

24008 =
0300% =
¥000$% =

(6317v2 3¥v SINILNOY
"d"4 41 AINO G3033IN) 39vd OHIZ SINILNOY ENIOd ONILVO14

AdyyD (0ud)100¥3UYNOS -> 0y4!

AHYYD (oud)INLY -> oy
AYY¥YI (oud)s00 -> pua!
A¥YYD *930<=9 ‘SAVY <= 0=974930 (OU4)NIS -> Oy4'

$3901Y14YD JISvE 3HL NI My

AY¥Y¥Y) (odd)o19071 -> ou4!
Adyyd (3)01907 7 (0¥4)01907 = (oH4)N1 -> oud!
AUYYD OYdas0T -> Q¥4!
ABEYD ((3)01907 « 0U4)0TdXT = O¥dwsd -> QU4
7 0Y4
T + 33¥930 = SINIIDI4430D 40 # 20V
9YVAId <- (0)v " (1-N)v ‘(N)v = (A'X) :LNdNI

Addv) (TexZa (I)v) (0 QL N = I)WNS = (2)d -> oud!
o4 ~> THJ:
0d4 ->(ulde14)
0¥d -> (A'X) 0534 IYOLS ONILVO1d
(4ld14) -> 14
(A'x) -> 144
(¥id13) -> oud

1939% =
erags =
£.09% .

1809% =

INIMOTI04 3HL

1a3as
a210% =
22003
020as$

h

0vaas =
9q40as$ =
avaas =
Lvaas =
J6aas =
8600$ =
asaas =

X12
12-F]
044

H0s
NViY
S02

NIS

01901
9071
01dX3
dX3

AN
INOW4
d0(S4
H0LS4
d1014
yigi4
d0G14

<400
0300
¥0a00

1939
£vag
£L09

18409

1034
4330
23040
03aa

0vaa
9900
avaa
ivaa
6404
8600
a84aa

215

Appendix B

AREW
1130
1133
RRER
RREN]
RREN
RREN
RRENR

Wy
Wy
WvY
Wy
WYy
Wyd
Wy
Wyd

NI
NI
NI
NI
NI
NI
NI
NI

{22-0
122-0
L22-0
L£2e¢-0
122-0
Lee-o
L22-0
L£22-0

*NOTLdIHIS3Q

YIGWNN ENTOd ONILYOTd SHISN OL SIN1Od: 24008

£700vd<--£10d" L+A%0d =

970avYd<--910d" 9+A0d =
§10Qvd<--640d" G+APN0d =
$700Yd<--¥L04d" ¥+A3A0d =
€700Yd<--£40d: €+A0d =
2100vd<--2£0d’ 2+AINN0d =
1700vd<--140d" I+A3%0d =
07aavd<--0L0d* 0+A3%0d =
TNOILOVY JINV1GA! 0602a$ =

SOINOWINW N33T702

SINIWNDYY VIIWANATOC! 09%+14087
Y¥344N8 3INIT: 0850%

(4490 0% 3160)

WYY dZ-NON .SINILNOY ENIOd ONILVOTd

$334930 = 9 ‘SNvVIQVY = O 24008

¥4344N9 LNdNI ANIT S.Y¥3SN OL SINIOM: £400% =

L£10d
91ad
G10d
¥1i0d
£10d
¢10d
110d
010d
ADN0d

cs e sm se sm em em 4m oem e s

94vAd
44N87

didild
9740wy
14NENI

£0¢d
902Q
G0ed
¥0z0
€020
202da
1020
0020
00¢a

0350
0860

2400
8400
€100

Appendix B

[01S1-->TL2%SS TLINS<--TEINSS
(:32 40 :S N340 A9 €312344Y) NIDYI<--XSWICd:

[o15]-->1n0Y¥3s INON '
[o1s1-->s34xs INON!
fa1s]-->1L20nv INON':
p8qgoJ43s!

Lt

G+V¥ILD
Y+VILD
€+YILD
2+YILD
T+VILD
0+vILD

0000%

GL+AN0d
Y1+AIN0d
€1+AIN0d
TT+ADN0d
0T+A3%0d
6+A3%0d
8+AIN0d
L£AN0d
9+A3%0d
G+AIN04
F+AN0d
£+A3%0d
¢+AIN0d
T+A3N0d
0+A30d

GT+A3IN0d
¥ T+A3%0d
ET+ADIOM

e/u
11+ANOd
0T+AINOd
6+A3%0d
8+A3IN0d

TWSOdH
OWSOdH
€d4S0dH
¢dSO0dH
14S0dH
04S0dH

VILd

TLMNS
URTED!
IREEN
0910d
SAUNS
YINWILS
13anvy
yaany
yiany
£20nY
£4any
2Jany
24anv
1200V
tdanv

IVESHS
1S0dI
NIY¥3S

09i0d
WOGONVY
300383
10477V

G000
vooa
£000
20040
1000
6ooa
0000

31020
1020
aoza
8020
voea
6020
8020
L0e@
8020
G020
v0ea
£020Q
2020
1020
00¢a

4024
31020
aoza

8020
voed
6020
f02d

217

Appendix B

UIVIdS 140 NinL

300N LOVHLEY HLIM

T0SNOJI<--80%:

N°DL3?

OWd103<--0¥700d"

£+VILD
S+YILD
0+VILD

1E+VILD
0E+VILD
62+VILD
82+VILD
L2+VILD
9Z+VILD
G¢+VILD
Ye+vILC
£2+VILD
22+VYILD
T24V1LD
02+VILD
6T+VvIlD

8T+VILD
LT+VILD
9T+VILD
GT+VILD
YI+VILD
ET+VILD
SL+VILD
T1+VILD
0T+VILD
6+VILD
8+VILD
L+Y1LD
9+Vv1LD

ddEW
ddZK
dd0W

JAGSNOD
4IJLIH
1LIVHD
AVT3I0A

401Yd

A9702
£447102
¢4d102
144700
044700
EWdT10D
2Wd100
TWd10D

0Wd10D

Wivd9
CCELEE]
<ddvyd
144vy9
0d4vy9

W3IZIS
£d43721S
¢d3zIs
143718
043718
EWSOdH
ZWSOdH

€000
2000
000a@

4100
3100
aiod
100
8100
v10Q
6100
8100
(100
9100
st0a0
y10d
€100

2100
1100
otog
4000
1000
aooa
2000
8000
vooa
6000
8000
£00d
9004

218

Appendix B

H0

[0

40

[0

[0

'S N340

*S N340

*S N340

*S N340

*S N340

NO

NO

NO

NO

NO

SVEBHJ-~>3SYaHD !

H1S1aS-->HiS1710!
114870S-->74S17¢°
LIVHI-->T1JVHD!

TLIWAS-->T1LIVIG

313!
TOIHLS<--091YlL*

6+JI1NY
L+JILNY
G+JI11NY
v+I1ANY

E+JILNY
¢+JILNY
T+JI1NY

0+JIINY
oovas

02+VILD
6T+VILD
8T+VILD
LT+VILD
9T+VvVILD
ST+VIlD
vi+VILD
ET4VILD
¢T+VILD
TT+VI1D
0T+VILD
6+VILD
84VI1D
L+VILD
94VIl)
S+VILD
v+VILD

ASYEBHI)
ISVaid
T0UIASA
TOHISH

HiSIG
11S17a
T1¥YHD

1LIVNWa
JIINY
wd
€91l
¢9IY41
191dl
0911
1dCd
1d2d
1dTd
140d
1dENW
1dZKW
I1dTH
140K
4d€d
4ded
ddid
4d0d

60vd
L0va
S0va
vova

£ova

aova

1ova

oova
00va

vioa
€1oa
Ztoa
1o
oroad
4000
jooa
aooa
3000
9000
vooa
6000
8000
1000
900aQ
S000
v00aQ

219

Appéndix B

CAgALIS] aNv NO ¥3MOd

NOILVZITYILINI 104100 LNINI TYIYW3S: G9¥3¢
SNOTLYINDTIVD Nvi8 TYITIHIA LIX3® 29v1%
SNOILYINDTYD YNv18 TVIILU3A WILSAS: e AR

ANVIBA padajyeq:
INVIGA @jetpowuw]:
g

SNt WD O~

L4
£
4
T Jauwl)

jyoey 03 JOII8A jO

Jawt}/J40328A JO §ST -~ A
JawL} /403084 4O gSW - X
St @ouanbas | (€3 8yl ‘AGALIS 01 1%98dSad yYIim

auLinod sJauwty walshs 3ast IG5y 3¢
autinod ndyno 3ndur (erJas: 651§
31138SVD: ovv3as

YALNIYd: 0€v3$

QUVOgAIN: 0238

NIJY¥IS NOISIAITAL! 0T¥3s

01103 oov3$

ST+JIUNY

Q3a0d1s: ST+JILlNY
O0p-->NIINWN: VI+J1LNY
ET+JI1NY

CU+JILNY

TT+JI1NY

OT+JILNY

ANIOIS
T8ALIX
ABASAS

43013S
WWI13S
GUWL3S
PUWL3S
EUWLIS
CUW13S
TUWLIS
#-v!

ABALIS
AOIS
ALISY)
AINIHd
AQBADY
ANIYHIS
AY1IQ3
LSINN
SIYIWN
N3IWN
AN3d
HN3d
INNQOJA
INASH

S9t3
29¥3
46¥3

000
9000
5000
v000
€000
2000
1000

Jev3
6St3
ov¥3
0ev3
0Zv3
0T¢3
003

100
40¢a
0v0
aovd
Jo0va
: (1 01]
vova

220

Appendix C

Program C-3. Simple Assembler: Atari Version.

168 HYX=1:REM IF HX= @ THEN ASSEMEBELY 1
S IN DECIMAL
20 DIM HE${14) ,ZO046 (7). Re(1¢) . MN$s(12)
LIBE (Y1) ,AZE (L) LE(T).B5AS(4Y ,HE{])
LRSS (1)
¢ OPEN B#i.t12.0,"E: "™
S HE$="#12345467839ARCDEF":57Z=1:20%="
aga
1 FRINT {37 W=D SR =
S PACESHASSEMBLER CONUEMTIONS
a;
119 DIM MEISEET) TYAL(SH)Y . .OF {560
172¢ FOR I=%1 TO S&6:READ MNS:ME{IXT-2,
I¥Z3)=MN$ {1, K6 =2
122 TYL(IY=VAL(MN$ (4, 4))Y:0P{1)y=VAL{MN
$(5))
136 NEXT 1
1400 FRINT =7
15¢ PRINT "Immediate{S SPACES}LLCA #1
Sll
155 PRINT "Absolutel{éd SPACESILDA 156
@we
168 PRINT "Zero pageiS SPACESXLDA 195
185 FRINT "fBccumulator{3 SFPACESIASL"
17¢ PRINT "Indirect X{4 SPACESILDA (

15Xy

175 PRINT "Indirect Y{4 SPACES:LDA
1SYyy”"

177 PRINT "Zero page X{3 SFACESILDA
1SX"

179 PRINT “"Zero oage Y{I SPACESXLDX
15vY*"

18¢ PRINT "Absoclute X{4 SPACES>LDA 1
Soax”

185 PRINT “"Absolute Y{4 SPACESYLDA 1
SHEY "

189 PRINT :PRINT "{4 SFACESIEnter al
1 numbers in "3

199 IF HX=1 THEN PRINT "OI=FFE":

231

Appendix C

195
197

290

229

254a9
268
278

284
293
ReL30
L3R
245

ES 1

232

PRINT " EITSEOEER"

? :? "Addresses:lUse 1536-1791 (%

AEOB-SALFFY":? 272

PRINT "{2 DEL LINE Please enter

starting":? "address faor ML prog

ram";: INPUT SA$:1IF SAas="" THEN 72
"{2 UFPI"::60T0O 240

IF HX=1 THEN H$=5A%: G0OS5UR Sa@@@:5

A=DE:GOTO 217

SA=VAL {SA%)

IF SA<256 OR SA>=46946% THEN 7 ®
{4 UPINot ZIFPAGE or ROM'":7? :G60T7TO
293

TA=SA:PRINT "{CLEAR":G0TO 2Z¢8

7o ? "{RELLEEISVGESEGCDORN' =~ :IF
HX=1 THEN 7 "{e.g. #5 should be
#ES) e

IF HX=1 THEN DE=SA:3Z=2:0605UER 44¢

G FRINT He;": "::60TOG 244

PRINT SA:": Y3

TRAP Z225: INPUT #21:MN$:™ “I{UFI";::

FOFE 85,23: IF MN&="*" THEN ~— »
{DEL LINEI"::G0TO 238

REM ADD NEW FPSEUDO-0OPS HERE

IF LEN(MNS) &6 THEN IF MM (LEN(MN

%) -&)="FORWARD” THEN FER=SA

IF MN$E="RESOLVE"” THEN FR=S5A-FBR:F

OFE FRE+1.FR-2:PRINT * Oor":607T0

239

IF MN$="POKE"” THEN FRIMNT "ADDR.M

UMBER(DEC) " : : INPUT ADDR.,NUM:FQOKE
ADDR,.NUM: GOTO 2Z27¢

IF MNe&="END" THEN 8a¢d

L=LEN(MNS):LE=MNE (1, K T}

FOR I=1 TO S5&6:1IF LE=ME(I¥Z-2.1%3
Yy THENM =49

NEXT 1

GOTO 859

REM PRIMARY OFCODE CATEGORIES

TY=TY(I)Y:QF=0P (1)

IF FE=5A THEN TMN=@:(0T0O 2Zdig

IF TYy=¢ THEN GI3TO 1@¢d

Appendix C

=2e IF Tv=T THENM TY=1:IF L=7 THEN OP
=0P+R:GOTO twEd

T3 R&=MN${(5):IF HX=1 THEN GOSUR &@d
el

T4 LR$=R$ (1.1 :LL=LEN{R$):IF LR&="#%
" THEN 488

IS5g IF LEs="(" THEN =248

6@ IF TY=8 THEN &89

7@ IF TY=Z THEN OF=DFP+8:G0T0Q 1440

Z84 IF R&{(LL)="X" OF R$(LLY="Y" THEN
536

96 IF Le(1,.1)="3" THEN 824

43¢ TN=VAL (R$): IF TN:>255 THEN 43¢

41 IF Ty=1 OR TY=3 OR T¥=4 OR TY=5S

THEN OP=0P+4

GOTO 2061

H=INT(TN/25&):L=(TN-256%HY: IF TVY

=2 0OR TY=7 THEN OP=0P+8:G0T0 A47d¢

443 IF TY=1 OR TY=3Z OR T¥Y=4 0OR TY=5S
THEN OP=0F+12:G0T0 474

450 IF TYy=&6 OR TY=9 THEN 47

454 GOTO 85S@

474 GOTO Iood

480 TN=VAL(R${(Z))

49@ IF TY=1 THEN OF=0F+B:G0T0 2#dg

s@d IF T¥Y=4 0OR TY=5 THEN GOTO 298¢

S1¢g G070 8549

528 IF ReE(LL-1)=")Y" THEN S4@

53¢ IF Re(LL-1)="X)" THEN S74@

S40 TN=VAL(E$(Z.LL-1))

558 IF TY=1 THEM DP=0F+14&:G0T0 2d@@6

S69 GOTO 8548

576 TN=VAL(R$(Z.LL-1))

588 IF TY=1 THEN GOTO Zogd

=98 GOTO 859

LHH TN=VAL{F$): TN=TN-SA-2:1IF TN -128
Or TM-127 THEN PRINT "MD"
:GOTO BS@

618 IF TN<@ THEM TN=TMN+Z546

&2 GOTO 286¢

£ IF Re{(LL-1)=")Y" THEN 540

649 IF R${(LL-1)="¥%" THEN 7248

H b

(N

L)

233

Appendix C

758
TH
77
784
79

830
814
824
83d
844
854
1 @@
1o 14

1828
1934

20648
2005

2814
2024

238
20144

REM *ZERO Y
TN=VAL (R$E(1 ., LL-1):IF TN:255 THE
N 589

IF TY=2 OR TY=5 THEN 738

IF TYy=1 THEN 7&4d
GOSUR 77@:1IF TY=1 THEN QF=0P+24:
GOTE 714

IF TYy=5% THEN DF=0F+28:G0T0 718
GOTO 85d
GOTO Z=aag

THN=YAL(R${1, LL-1))Y:IF TN255 THE
N GOSUR 774:607T0 73d

IF Ty=2 THEN 0OF=0P+15:G0T0 744
IF TYy=1 OF T¥=2 0OR T¥=5 THEN OF=
OP+2¢: GOTO 7649

GOTO 85H

GaTO 2z2eape
H=INT(TN/256) : L=TN-256¥H: RETURN
IF TY=C" THEN OF=0FP+24:6G0T7T0 814
IF TYy=1 OR TY=3 0OF T¥Y=35 THEN OF=
OF+28: G0O0TO 81

GOTO 8:Sa

GOTO Zade

TN=YVAL{F%)}

GosSUr 774

GOTO 71¢

FRINT " IBELL>EHDLEE': GOTO 2549
REM 1 EBYTE INSTRUCTIONS

POEE SA,0P:5A=5A+1:1IF HY=1 THEN

1@8Z¢

PRINT OP:GOTO 23g
DE=0F:GOSUE 4@@@: FRINT H$:50TD
234

REM 2 BYTE INSTRUCTIONS

IF TN-256 THEN 7 :7? "Error—-%;:7

M:"+256 ($1d6)":60T0 234

POKE SA.0OP:POKE SA+1.TN:SA=SA+2
:IF HX=1 THEN Z@g3g

PRINT OP;"” ":TN:GOTO ZI3#

DE=0F: GOSUE 4¢a@@d:FPRINT H&:" "

DE=TN: GOSUR 4d@86:PRINT H%:60T0

234

Appendix C

K$CEoR0)
3@y a

&3 7 A4 3]
IE858
2B 44
I@Sa

4 aaGH
4316

LEIE

YL 5]

&a5d
B s

HH6S

REM 5 BYTE INSTRUCTIONS
FPOKE SA.0P:POKE SA+1,L:FPOEE SA+
2.H:5A=5A+3:1IF HX=1 THEN 434

PRINT OF:” "3;L:" ":H:GOTO 234
DE=0P: GOSURBR 4@a@@:PRINT H&:; " "3
DE=L:6G05UR 4aa0: PRINT H$%s;" "3
DE=H: GOSUER 4ded:FRINT H$:2G07T0O 2
L3

REM DECIMAL TO HEX (DE TO H%)
He="": A=INT{(DE/256):1IF A>@ THEN

AH=INTI{A/1&6):AL=A-AHX16:He=HES$
(AH+1 ,6H+1)Y : HS(2)=HE$ (AL+1,AL+1
)
A=DE-A¥25&6: AH=INT (A/16) : AL=A-AH
X16:HES(LEM{H$)Y+1)=HE& (AH+1,AH+1
Y:HE(LEN(H$) +1)Y=HE® (AL+1,AL+1):
SZ=1: RETURN
REM HEX TO DECIMAL (H$% TO DE)
D=¢:@==:FOR M=1 TO 4:W=ASC(HS (M
1)Y-48:1F W:9 THEN W=W-7
D=D¥1&6&+W:NEXT M:DE=INTI(D} : RETUR
N
REM ACCEPT HEX OPCODE INPUT AND

TRANSLATE IT TO DECIMAL
IF RE(1,.1)y="%" THEN H&="ga":H${
ZY=R%(2):GOSUR So@d:ReE="H#H":RE(2
)=5TR$% (DE) : RETURN
LS=LEN(R$):AZE=R$(1,1Y:Z2AS=Rs (L
S5):1IF AZ$%<x" (" THEN 60548
IF ZA%="Y" THEN H$="@a"::H$% (3} =K
${(2.4):G0SUR S@Ag@:RE=" ("1 R$E(Z)} =
STR(DEY :RE(LEN(R$)+1)="2Y":RET
URN
IF zas=")" THENMN H$="d@":H$E{(3I)=R
$(2,4):G08UR S@dgd:R&="{":R$(2)=
STR$(DE) :R&E{(LEN(R%)+1)="X)":RET
URN
IF ZA%s="X" OR ZA%="Y" THEN &6708
He="":1F LS<{4 THEN H$=70%{(1,4-L
51}

HE(LEN(H$)+1)=R%$: GOSUR S@a#g:R$=
STR$% (DE) : RETURN

235

Appendix C

LB T8

LABH
LB

8ada

8@1s

200808

2619

IF LS=5 THEN H$=R%(1,4):G0T0 &d@
@@

He="@@8": H$ (Z)=R$ (1,2

GOSUR S@8@:R$=STR$(DE) : R$E{LENIR
$)+1)=7A%: RETURN

PRINT :PRINT "“XSTARTS ":TA:;:S5I=

3:DE=TA: GOSUR 438@: PRINT " (%"
H$; il) 1

FRINT " ENDS{Z SPACES>":;S5A:;:DE=
SA:5I=3:6085UR 48¢d:PRINT " {($";

HE: ") ":END

DATA ADC1697 ANDI@ZI.ASLIAGZ, R
CC8144 HBCS8174,.BEO8Z240 , RIT74836
.BEM1B8&48

DATA BNEBS2&8.EBFPLB8O146. BREGAGE K
vC8aB8He,HVS8112,.CLCeA24, CLDA21 S
.CLI3®88

DATA CLV®184,CMP1193,CPX47224,C
PY4192.DEC2198.DEXS2E82, DEY®136
L.EOR1G65

DATA INC22I@, INX@#Z2Z2, INYSZHH, J
MPL@76.IGREZ2.1.DA11SL,.LDX5162
LLDYS146@

DATA LSRIEASLS.NOPHE2Z4, ORALPHL P
HAB@E 72, PHPOGH8 , FLAGLIEA PLPAEAE
ROL3IAIS

DATA RORIGO98,RTIgHA4, RTSEHAPSL, 5
BC1225,5ECH0546, SEDS248, SE10120
. STA1129

DATA STX2134,.5TY21322,7TaXa176, 7
AYB168B, TSXE186, TXAG1I3ZB, TXSH1SA
LTYRB1I52

Appendix D

Note: The /\ means “‘to the power of “asin2 N 2=4,
Program D-I. Disassembler (VIC, PET, Apple, 64 Version).

1 HE$="0123456789ABCDEF"

2 LE="mmm e e e
___ll

4 J$=Il ——— 1]

13 PRINT" DISASSEMBLER

14 PRINT

16 DIMMS (15,15)

17 FORI=BTO15:FORB=@TO14;:READMS(I,B):NEXTB:
NEXTI

25 REM START MAIN LOOP

30 PRINT"STARTING ADDRESS (DECIMAL)"“; :INPUT
SA:TA=SA

31 PRINT"START ADDRESS HEX "; :DE=SA:ZX=3:G
OSUB120@ :PRINTHS" "

35 IFSA<@THENEND

41 I=SA

45 REM PRINT ADDRESS

46 PRINTI" ";

5@ X=PEEK(I)

55 GOSUB5Q0@

56 IFL%=150RMS$ (H%,L3%)="@"THENPRINT" ? "
X : CK=@ : LN=LN+1 : GOTO70

58 PRINTMS (H%,L%);

60 GOSUB6GPY: IFEQTHENEQ=0

78 I=I+1

72 IFLN=2@THENLN=@:GOT02000

80 GOTO45

680 IFCK=12THEN6O3

601 B=PEEK(I+1):IFB>127THENB=((NOTB)AND255)+

1:B=-B
602 BAD=I+2+B:PRINT" "BAD: I=I+1:RETUR
N

603 IFH$>8THENB8GQ
604 IFH¥=2THENJ=1:GOTO850
605 IFH$=6THENPRINT:PRINTLS :EQ=1:RETURN

237

Appendix D

606 IFH$=6THENRETURN

697 PRINT

608 RETURN

619 IFCK=12THEN615

611 PRINT" ("PEEK(I+1)"),Y"
612 I=I+1:RETURN

615 PRINT" ("PEEK(I+1l)",xX)"
616 I=I+1:RETURN

630 IFCK=12THEN635

631 PRINT" "PEEK(I+1)",x"

632 I=I+1:RETURN

635 PRINT" "PEEK(I+1)

636 I=I+1:RETURN

640 IFCK=12THEN645

641 PRINT"” "PEEK(I+1)",x"

642 I=I+1:RETURN

645 PRINT" "PEEK(I+1)

646 I=I+1:RETURN

660 IFCK=12THEN645

661 IFH$=90RH$=11THENPRINT" "PEEK(I+1)",Y"
662 IFHZ=7ORH2=150RH%=50RH%=3THEN640
663 IFH$=13THEN631

664 PRINT:GOTO0642

688 PRINT: RETURN

690 IFCK=12THEN8@O

691 I$="Y":GOTO850

720 IFCK=12THEN725

722 1$="X":GOT0858

725 IFH$=6THENPRINT" (IND. ";:I=I+1
726 IFH$=2THEN859

727 IFH%=4THENPRINTJS; :GOTO858
728 IFH$=80RH%=100RH%=120RH%=14THEN850
729 GOTO0618

738 IFCK=12THEN858

731 1$="X":GOTO858

74¢ IFCK=12THEN850

741 IFH$=11THENIS$="Y":GOTO850
742 1I$="X":G0TO850

809 PRINT" #"PEEK(I+1)

801 I=I+1:RETURN

850 N=PEEK(I+1)+PEEK(I+2)*256
860 IFIS=""THEN90Q

870 IFIS$S="X"THENPRINT" "N",X"
889 IFIS="Y"THENPRINT" "N",Y"

238

Appendix D

898 1I$="":I=I42:RETURN

900 PRINT" “"N:I=I+2

936 RETURN

1998 DATABRK,ORA,D,93,0,0RA,ASL,0,PHP,ORA,ASL,
¢,8,0RA,ASL,BPL,ORA,Q%,8,3,0RA,ASL

191¢ DATA®,CLC,ORA,%,0,08,0RA,ASL,JSR,AND,D,0,
BIT,AND, ROL,®,PLP,AND,ROL,Q,BIT

1928 DATAAND, ROL,BMI,AND,@,d,0,AND, ROL,d,SEC,
AND,®,@,9 ,AND, ROL,RTI,EOR,0,0,0

193¢ DATAEOR, LSR,d,PHA,EOR,LSR,0,JMP, EOR, LSR,
BVC,EOR,%,9,0,EOR,LSR,d,CLI,EOR,®

1940 DATAZ,@,EOR,LSR,RTS,ADC,0,0,8,ADC,ROR,Q,
PLA,ADC

1945 DATAROR,®,JMP,ADC,ROR,BVS,ADC,2,8,0

185¢ DATAADC,ROR,9,SEI,ADC,9,0,8,ADC,ROR,d,ST
A

1855 DATA®,8,STY,STA,STX,8,DEY,?,TXA,d,STY, ST
A

1868 DATASTX,BCC,STA,%,@,STY,STA,STX,d,TYA, ST
A,TXs,9,9,STA,9,LDY,LDA,LDX,®

1970 DATALDY,LDA,LDX,®,TAY,LDA,TAX,@,LDY,LDA,
LDX,BCS,LDA,®,8,LDY,LDA,LDX,0

1280 DATACLV,LDA,TSX,0

1898 DATALDY,LDA,LDX,CPY,CMP,®,8,CPY,CMP,DEC,
@,INY,CMP,DEX,®,CPY,CMP,DEC

1295 DATABNE,CMP,d,0,8,CMP,DEC,d,CLD,CMP,%,0,
@,CMmP, DEC, CPX,SBC,9d,8,CPX, SBC, INC

1998 DATAJ, INX, SBC,NOP,@,CPX, SBC, INC,BEQ, SBC,
¢,0,8,SBC,INC,®,SED,SBC,0,0,8,SBC

1899 DATAINC

1200 REM MAKE DECIMAL INTO HEX

1201 HS$="":FORM=ZXTOBSTEP-1:N%=DE/(16"M) : DE=D
E-N%*16"M:HS$S=HS$+MIDS (HES$, N%+1,1)

12802 NEXT:RETURN

2000 PRINT"TYPE C TO CONTINUE FROM" I

2001 GETKS:IFKS=""THEN2001

2082 IFKS$="C"THENSA=I:TA=SA:GOTO35

2093 INPUTSA:TA=SA:GOTO35

5009 REM ANALYZE H & L OF OPCODE

5010 H%=X/16:L%=X-H%*16

5828 :RETURN

630% REM FIND ADDRESS TYPE & GOSUB

6820 CK=H%/2:IFCK=INT(CK)THENCK=12

6825 L¥=L%+1

239

Appendix D

6@30 ONL¥GOSUB69Y,610,800,60850,640,640,660,60
50,680,690,680,6850,720,730,740

6040 CK=0

6845 LN=LN+1

60858 RETURN

Program D-2. Atari Disassembler.

100 REM

105 GRAFPHICS 0:FPOSITION 11,0:7? "HEEE
ME2EREEEEINE 7 2 "Loading opc
ocdes..."

110 DIM OPCODE$(25356%10) ,LN{(255) ,NR(25
S).TH(10) ,DE (D)

1206 FOR I=0 TO 255

125 READ T4 ,NB

130 LN(I)=LEN{(TS$)

140 OPCODES{(IX104+1,IX10+LN{(I))=T%

1530 NB(I)=NB

160 NEXT 1

170 BGRAPHICS Q:FOSITION 11,0:7? "HEEEEN
L DISASSEMBLER M

180 2?2 ::72

190 TRAP 190:7 "{UPI{DEL LINEXStartin
g Address {(Decimal)”;: INPUT ADDR:
TRAF 40000

200 IF ADDR<O OR ADDR>6353S3S5 THEN 1920

210 OP=PEEK {(ADDR) :NR=NR{OF)

220 T=0PCODE%(OFPx10+1,0PX10+LN(OP))

230 PRINT ADRDR;:FPOKE 85,10:PRINT 0OFP;:
FPOKE BS,15

240 ON NE+2 6G0OTO 242,244,250,260,270

242 NB=Z: T=PEEK{ADDR+1):1IF Tx>128 THEN
T=T~-256

243 PRINT T;:FPOKE B8S,20:PRINT T&%;:;"” "
s ADDR+24+T: 60T0O 300

244 ? "ARFOTILITLGRE":NR=1:60T0 00

2445 PRINT T4;" ":ADDR+2+T:60T0 300

250 POKE B85,20:PFPRINT T$:60T0 300

260 PRINT PEEK (ADDR+1);:POKE B8%5,20:D%
=STR$ (FPEEK (ADDR+1)) : GOSUR 400:G0T
g 300

240

Appendix D

J00
310
320
JI30
400

S00

510

520

530

540

590

H00

610

FRINT PEEK(ADDR+1);:POKE 85,15:FK
INT PEEK (ADDR+2);:POKE 85,20
D$=STR$ ((PFEEK (ADDR+1) +255XPEEK (AD
DR+2))):GOSUR 400

ADDR=ADDR+NB: IF ADDR<O THEN ADDR=
65536-T

IF ADDR:>65535 THEN ADDR=T

IF PEEK{(53279)=7 THEN 210

GOTO 190

? T$(1,8+(LN(OP)>8));D$;T$(4+2%(L
N{(OP) >5)) : RETURN

DATA BRK,1,0RA (X),2,7.0,7.0,7.0,
ORA ,2,ASL ,2.7.0,PHP,1,0RA # .,

-2
F4

DATA ASL A,1,7,0,7,0,0RA ,3,AS5L
,3,?,0,BPL,-1,0RA ()Y,2,72,0,7,0
DATA ?,0,0RA X,2.AS5L X.2,?,0,CL
C,1,0RA Y,3,7,0,7.0,7,0,0RA X,3
DATA ASL ,2,7.0,JSR ,3,AND (X),2
+?.0,7,0,BIT ,2,AND ,2,ROL ,2,7,0
DATA PLP,1,AND # ,2,ROL A,1,7,0,H
IT ,3,AND ,3,ROL ,3,7,0, BMI,—1,AN

-

D ()Y,2
DATA 7,0.7,0,7,0.,AND X,2,ROL X,
2,?,0,SEC,1,AND VY,3,CLI,1,7.0
DATA ?,0,AND X,3,ROL X.3,7.,0,.RT
1,1.EOR (X),2,?,0,7,0,7,0,EO0R ,2
DATA LSR ,2,7,0,PHA.1,EOR # ,2,L
SR ,3,7.,0,JMP ,3,EOR ,3,LSR ,
3,7,0
DATA BVC,-1,EO0R ()Y,2,2,0,7,0,7,0
. EOR X.L,LSR X.2.,7,0,CLI, I,EDR
Y,2
DATA 7,0,7,0.7,0,EOR X,3,LS5R X,
3,?.0,RTS,1,ADC (X),2.7,0,7,0
DATA ?,0,ADC ,2.ROR .2.?.O.PLA,
1,ADC # .2,ROR A,1,7,0,IJMP (),108
LADC .3
DATA ROR ,3.7,.0,BVS,.-1,ADC OY,
3 2.0,7,0,7,0,ADC X.L,RDR Xy 2
0

2

241

Appendix D

540

630

bH0

b70

680

b0

700

710

730

740

750

242

DATA SEI,1,ADC
DC X.3,ROR X
2
DATA 7,0,7,0,5
.2,7,0, DEV, 1,
DATA STY .3.85
BCC,-1,5TA ()Y
.STA X,2
DATA STX
TXS,1,7,0,7,0,
DATA LDY % ,2,
L0,LDY
AY.1,LDA # .2

Y, 2,7

«2.LDA

Y.3,7,0,
2,0,

7.0,
5TA

?.0,A
e 3,2.0, (X),
TY .L.STA «2.5TX

2,0, TXA,1,7,0

s .3, srx T3P, 0,
2.7.,0,7,0,85TY X,2

O, TYAL1,8TA Y,3,
STA
LDA

X:3.7,0,
(X),2,LD
.2.LDX

NP
7]
O‘I
L

DATA TAX,1,7?,0,LDY ,3,LDA ,3,LD
X _O_BCS -1,LDA ()Y,2,.7.0,7,
0

DATA LDY X,.2.LDA X.2,LDX Y,2,7?
L0,CLV,1,LDA Y,3,TSX,1,7,0,LDY
X,3,LDA X.3

DATA LDX VY,3,7,0,CPY # ,2,CMP (X

) a2,7,0,
22,7, 0
DATA INY,1,CMF
» 3. CMP
MP ()Y,.2

?,0,CF

DATA 2,0,7,0,7,

2,?,0,CLD,1,CM

DATA 7,0,CMP X,3,DEC x 3,7,0.CF
X # ,2,S5BC (X).2.7.0,7. CPX .2

SRC ,2

pATA INC ,2,7,0,INX,1,SBC # ,2,N

oFP,1,?,0,CPX .3,8BC ,3,INC ,3,

2,0

DATA BE@,-1,SBC (Y),2,7,0,7,0,7,0
,SBC X,2.INC X,2,?.0,SED,1,SBC
Y,3

DATA 2,0,7,0,7,0,SBC X,3,INC X,
3.7.0

» 3¢ DEC D 7s O.BNE

y .2,CMP ,2,DEC

$# ,2,DEX.1,7.,0,CPY
-1,¢C

0,CMP X,2.,DEC X,
P Y,3,7,0,7,0

Appendix E
Number Tables

This lookup table should make it convenient when you need to
translate hex, binary, or decimal numbers. The first column lists the
decimal numbers between 1 and 255. The second column is the
hexadecimal equivalent. The third column is the decimal equivalent
of a hex most significant byte or “MSB."" The fourth column is the
binary.

If you need to find out the decimal equivalent of the hex number
$FD15, look up $FD in the MSB column and you’ll see that it’s 64768.
Then look up the $15 in the LSB column (it’s 21 decimal) and add
21+ 64768 to get the answer: 64789.

Going the other way, from decimal to hex, you could translate
64780 into hex by looking in the MSB column for the closest number
(1t must be smaller, however). In this case, the closest smaller number
is 64768 so jot down $FD as the hex MSB. Then subtract 64768 from .
64780 to get the LSB: 12. Look up 12 in the decimal column (it is $0C
hex) and put the $FD MSB together with the $0C LSB for your
answer: $FDOC. ’

With a little practice, you can use this chart for fairly quick .
conversions between the number systems. Most of your translations
will only involve going from hex to decimal or vice versa with the LSB
of hex numbers, the first 255 numbers, which require no addition or..
subtraction. Just look them up in the table.

Table E-I.
Decimal | 155 | sy | pinery
1 01 256 00000001
2 02 512 00000010
3 03 768 00000011
4 04 1024 00000100
5 05 1280 00000101
6 06 1536 00000110
7 07 1792 00000111
8 ,08 2048 00001000
9 09 2304 00001001
10 OA 2560 00001010

243

Appendix E

[

244

Dec D ec..

Lb e pes g

Decimal (.l[;lse;) (111' ;}“ Binary

11 OB 2816 00001011
12 o0C 3072 00001100
13 0D 3328 00001101
14 OE 3584 00001110
15 OF 3840 00001111
16 10 4096 00010000
17 11 4352 00010001
18 12 4608 00010010
19 13 4864 00010011
20 14 5120 00010100
21 15 5376 00010101
22 16 5632 00010110
23 17 5888 00010111
24 18 6144 00011000
25 19- 6400 00011001
26 1A 6656 00011010
27 1B 6912 00011011
28 1C 7168 00011100
29 1D 7424 00011101
30 1E 7680 00011110
31 1F 7936 00011111
32 20 8192 00100000
33 21 8448 00100001
34 22 8704 00100010
35 23 8960 00100011
36 24 9216 00100100
37 25 9472 00100101
38 26 9728 00100110
39 27 9984 00100111
40 28 10240 00101000
41 29 10496 00101001
42 2A 10752 00101010
43 2B 11008 00101011
44 2C 11264 00101100
45 2D 11520 00101101
46 2E 11776 00101110
47 2F 12032 00101111
48 30 12288 00110000
49 31 12544 00110001

Appendix E

D{{/ Dec.

Lsp ms b

Decimal é‘;{,‘) (gjg’;,, Binary

50 32 12800 00110010
51 33 13056 00110011
52 34 13312 00110100
53 35 13568 00110101
54 36 13824 00110110
55 37 14080 00110111
56 38 14336 00111000
57 39 14592 00111001
58 3A 14848 00111010
59 3B 15104 00111011
60 3C 15360 00111100
61 3D 15616 00111101
62 3E 15872 00111110
63 3F 16128 00111111
64 40 16384 01000000
65 41 16640 01000001
66 42 16896 01000010
67 43 17152 01000011
68 44 17408 01000100
69 45 17664 01000101
70 46 17920 01000110
71 47 18176 01000111
72 48 18432 01001000
73 49 18688 01001001
74 4A 18944 01001010
75 4B 19200 01001011
76 4C 19456 01001100
77 4D 19712 01001101
78 4E 19968 01001110
79 4F 20224 01001111
80 50 20480 01010000
81 51 20736 01010001
82 52 20992 01010010
83 53 21248 01010011
84 54 21504 01010100
85 55 21760 01010101
86 56 22016 01010X10
87 57 22272 01010111
88 58 22528 01011000

245

Appendix E

246

Dee Ve ¢
Lot wo ¥
Decimal ({.{Se;) (g-,ll;’{” Binary
89 59 22784 01011001
90 5A 23040 01011010
91 5B 23296 01011011
92 5C 23552 01011100
93 5D 23808 01011101
94 5E 24064 01011110
95 ©SF 24320 01011111
96 60 24576 01100000
97 61 24832 01100001
98 62 25088 01100010
99 63 25344 01100011
100 64 25600 01100100
101 65 25856 01100101
102 66 26112 01100110
103 67 26368 01100111
104 68 26624 01101000
105 69 26880 01101001
106 6A 27136 01101010
107 6B 27392 01101011
108 6C 27648 01101100
109 6D 27904 01101101
110 6E 28160 01101110
111 6F 28416 01101111
112 70 28672 01110000
113 71 28928 01110001
114 72 29184 01110010
115 73 29440 01110011
116 74 29696 01110100
117 75 29952 01110101
118 76 30208 01110110
119 77 30464 01110111
120 78 30720 01111000
121 79 30976 01111001
122 7A 31232 01111010
123 7B 31488 01111011
124 7C 31744 01111100
125 7D 32000 01111101
126 7E 32256 01111110
127 7F 32512 01111111

Appendix E

Oec Pec

Ls® ws@>

Decimal ({lse;) (]&i g’;” Binary
128 80 32768 10000000
129 81 33024 10000001
130 82 33280 10000010
131 83 33536 10000011
132 84 33792 10000100
133 85 34048 10000101
134 86 34304 10000110
135 87 34560 10000111
136 88 34816 10001000
137 89 35072 10001001
138 8A 35328 10001010
139 8B 35584 10001011
140 8C 35840 10001100
141 8D 36096 10001101
142 8E 36352 10001110
143 8F 36608 10001111
144 90 36864 10010000
145 91 37120 10010001
146 92 37376 10010010
147 93 37632 10010011
148 94 37888 10010100
149 95 38144 10010101
150 96 38400 10010110
151 97 38656 10010111
152 98 38912 10011000
153 99 39168 10011001
154 9A 39424 10011010
155 9B 39680 10011011
156 9C 39936 10011100
157 9D 40192 10011101
158 9E 40448 10011110
159 9F 40704 10011111
160 A0 40960 10100000
161 Al 41216 10100001
162 A2 41472 10100010
163 A3 41728 10100011
164 A4 41984 10100100
165 A5 42240 10100101
166 A6 42496 10100110

247

Appendix E

248

Hex

Hex

Decimal | (1sB) | (MSB) Binary

167 A7 42752 10100111
168 A8 43008 10101000
169 A9 43264 10101001
170 aa 43520 10101010
171 AB 43776 10101011
172 AC 44032 10101100
173 AD 44288 10101101
174 AE 44544 10101110
175 AF 44800 10101111
176 BO 45056 10110000
177 B1 45312 10110001
178 B2 45568 10110010
179 B3 45824 10110011
180 B4 46080 10110100
181 B5 46336 10110101
182 B6 46592 10110110
183 B7 46848 10110111
184 B8 47104 10111000
185 B9 47360 10111001
186 BA 47616 10111010
187 BB 47872 10111011
188 BC 48128 10111100
189 BD 48384 10111101
190 BE 48640 10111110
191 BF 48896 1011111l
192 CO 49152 11000000
193 C1 49408 11000001
194 C2 49664 11000010
195 C3 49920 11000011
196 C4 50176 11000100
197 C5 50432 11000101
198 C6 50688 11000110
199 C7 50944 11000111
200 C8 51200 11001000
201 C9 51456 11001001
202 CA 51712 11001010
203 CB 51968 11001011
204 CC 52224 11001100

Appendix E

Hex

Hex

Decimal (LSB) (MSB) Binary

205 CD 52480 11001101
206 CE 52736 11001110
207 CF 52992 11001111
208 DO 53248 11010000
209 D1 53504 11010001
210 D2 53760 11010010
211 D3 54016 11010011
212 D4 54272 11010100
213 D5 54528 11010101
214 D6 54784 11010110
215 D7 55040 11010111
216 D8 55296 11011000
217 D9 55552 11011001
218 DA 55808 11011010
219 DB 56064 11011011
220 DC 56320 11011100
221 DD 56576 11011101
222 DE 56832 11011110
223 DF 57088 11011111
224 EO 57344 11100000
225 E1 57600 11100001
226 E2 57856 11100010
227 E3 58112 11100011
228 E4 58368 11100100
229 E5 58624 11100101
230 E6 58880 11100110
231 E7 59136 11100111
232 E8 59392 11101000
233 E9 59648 11101001
234 EA 59904 11101010
235 EB 60160 11101011
236 EC 60416 11101100
237 ED 60672 11101101
238 EE 60928 11101110
239 EF 61184 11101111
240 FO 61440 11110000
241 Fl1 61696 11110001
242 F2 61952 11110010

249

Appendix E

; Hex Hex .
Decimal (LSB) (MSB) Bmary

243 F3 62208 11110011
244 F4 62464 11110100
245 FS5 62720 11110101
246 F6 62976 11110110

247 F7 63232 11110111
248 F8 63488 11111000

249 F9 63744 11111001
250 FA 64000 11111010
251 FB 64256 11111011
252 FC 64512 11111100
253 FD 64768 11111101
254 FE 65024 11111110
255 FF 65280 11111111

The following program will print copies of this number table.
You might need to make some adjustments to the printout
conventions of your computer’s BASIC and your printer itself. This
program is for Microsoft BASIC and will not work on the Atari.

Program E-I. Microsoft Table Printer.

18 OPEN4,4:REM OPEN CHANNEL TO PRINTER
100 HES="0123456789ABCDEF"

118 FORX=1T0255

120 B=2:C=1

122 IFX<1@THENPRINT#4," ";:GOT0130
124 IFX<10@0THENPRINT#4," ";

130 PRINT#4,X;" “; :DE=X:G0SUB249

135 REM CREATE BINARY

140 IFXAND1THENKS (C)="1":G0OT0160

150 Ks(c)="g"

168 C=C+1:IFBANDXTHENKS (C)="1":GOT0180
170 KS$(c)="g"

180 B=B*2:IFC>8THEN200

199 GOTOl6d

203 FORI=8TOlSTEP-1:PRINT#4,KS$(I); :NEXTI

250

Appendix E

220 PRINT#4 :NEXTX

230 END:REM TRANSFORM TO HEX

240 HS="":FORM=1TO@STEP-1:N%=DE/ (16 "M) : DE=DE
~-N$*16 "M

250 HS$S=HS+MIDS(HES,N%+1,1):NEXT

260 PRINT#4,HS" ";:DE=X*256

262 IFDE<10@@THENPRINT#4," ";:GOT0270

264 IFDE<1O0Q@THENPRINT#4," “;

270 PRINT#4,DE" ";:RETURN

251

Appendix F
SUPERMON For PET

The following monttor extensions are the work of several programmers and were previously
published in COMPUTE! Magazine (See the copyright page for references)

Here is the legendary Supermon — a version for Upgrade (3.0 or
““New ROM’’) and 4.0 PETs, all keyboards, all memory sizes, 40 or 80
column screens. You need not yet know how to program in machine
language (ML) to enter this program — or to use it. In fact, exploring
with Supermon, you will find that the mysterious world of your
computer’s own language becomes gradually understandable. You
will find yourself learning ML.

Many ML programmers with PET/CBM machines feel that
Supermon is the essential tool for developing programs of short to
medium length. All Upgrade and 4.0 machines have a “‘resident”’
monitor, a program within the computer’s ROM which allows you to
type SYS 1024 and see the registers, load and save and run ML
programs, or see a memory dump (a list of numbers from the
computer’s memory cells). But to program or analyze ML easily,
disassembler, assembler, hunt, and single-step functions are all
practical necessities. Supermon provides these and more.

Even if you’ve never assembled a single instruction and don’t
know NOP from ROL, this appendix will lead you step-by-step
through the entry and SAVE of Supermon.

How To Enter Supermon

1. Type in the BASIC program (Program 1). It is the same for all
versions. Then save it normally by typing SAVE ““CONTROL"’. This
program will be used later to automatically find your memory size,
transfer Supermon to the top, and report to you the SYS address you
use to activate it.

2. Now the hard part: type SYS 1024 which enters you into the
machine language monitor. You will see something like the
following:

Figure I,
B*
PC IRQ SR AC XR YR SP
.; 0401 EA455 32 94 S5E P9 EE

Then type: M 0600 0648 and you will see something similar to this
(the numbers will be different, but we are going to type over them
which, after hitting RETURN on each line, will enter the new
numbers into the computer’s memory):

253

Appendix F

Figure 2.

.M 0600 P648

.: @600 28 58 FF FF #0 @B 86 AD
.: Q608 FF FC 08 21 86 083 AD A9
.: @618 CB 85 1F A9 @C 85 20 AS
.1 @618 34 85 21 A5 35 85 22 A¥
.: 0620 00 93 06 £6 D@ 16 20 38
.: P628 06 FO® 11 85 23 20 38 P6
.: 9638 18 65 34 AA A5 23 65 35
.t @638 20 43 @05 8A 24 43 @6 20
.: 0640 50 06 90 DB 60 EA EA AS
.: 9648 1F D@ B2 C6 20 C6 1F Bl

We have divided Supermon into 21 blocks with 80 hexadecimal
numbers per block to make typing easier. There is a final, shorter
block with 64 numbers. Type right over the numbers on the screen so
that line 0600 looks like it does in Program 2. Then hit RETURN and
cursor over to the A5 on line 0608. (Set a TAB to this position if your
keyboard has a TAB key.) Then type over the numbers in this line and
so on. When you have finshed typing your RETURN on line 0648,
type in: M 0650 0698 and the next block will appear for you to type
over. Continue this way until you finish entering the new version of
line 0CC8 at the end. (Hope that no lightning or fuses blow.)

3. 1f you have Upgrade ROMs, you will need to correct the lines
listed in Program 3 at this point. To change line 06D0, simply type M
06D0 06D0 and it will appear so that you can type over it and
RETURN as in step 2.

4. Now Supermon is in your memory and you must SAVE it.
Hit RETURN so that you are on a new line and type:
S’’SUPERMON"*, 01,0600,0CCC (to SAVE to tape) or type:
S’'0:SUPERMON"’,08,0600,0CCC (to SAVE to disk drive 0).

5. Finally, you will want to use the Checksum program to see if
you made any errors during the marathon. You probably did, but to
make it as painless as possible, the Checksum program will flash
through your Supermon and let you know which blocks need to be
corrected. So, type in Program 4 (or if you have Upgrade ROMs, use
the first three lines from Program 5). SAVE Checksum just in case.
Then LOAD ‘SUPERMON"’ (an ordinary LOAD as with a BASIC
program will slide it 1n starting at address 1536, above the end of
Checksum). Then RUN. Incorrect blocks will be announced. When
you know where the errors are, type SYS 1024 and then M XXXX
XXXX for the starting and ending addresses of the bad block. Check

254

Appendix F

the numbers against Program 2 (or Program 3) and in all corrections.
If, despite everything, you cannot find an error within a block, make
sure that the corresponding number within the DATA statement of
the Checksum program is correct. Then SAVE the good version
"”SUPERMONT1" as in step 4.

6. Your reward is near. LOAD "CONTROL"" and then LOAD
SUPERMONT1. Then type RUN and hold your breath. If all goes well,
you should see:

Figure 3.
SUPERMON4 !

DISSASSEMBLER BY WOZNIAK/BAUM
SINGLE STEP
BY JIM RUSSO
MOST OTHER STUFF ,BY BILL SEILER

TIDIED & WRAPPED BY JIM BUTTERFIELD

LINK TC MONITOR -- SYS 31283

SAVE WITH MLM:
.S "SUPERMON",91,7A33,8000
READY.

And you should be able to use all the commands listed in the
Supermon Summary. If some, or all, of the commands fail to
function, check the last, short block of code to see if there are any
errors.

After Supermon is relocated to the top of your memory, use a
ML SAVE to save it in its final form. Instructions are on screen after
RUN.

SUPERMON SUMMARY

COMMODORE MONITOR INSTRUCTIONS:
GO RUN

LOAD FROM TAPE OR DISK
MEMORY DISPLAY

REGISTER DISPLAY

SAVE TO TAPE OR DISK

EXIT TO BASIC

XN Q

255

Appendix F

256

SUPERMON ADDITIONAL INSTRUCTIONS:
SIMPLE ASSEMBLER
DISASSEMBLER
FILL MEMORY
HUNT MEMORY
SINGLE INSTRUCTION
PRINTING DISASSEMBLER
TRANSFER MEMORY
SUPERMON WILL LOAD ITSELF INTO THE
TOP OF MEMORY .. WHEREVER THAT HAPPENS
TO BE ON YOUR MACHINE.

YOU MAY THEN SAVE THE MACHINE CODE
FOR FASTER LOADING IN THE FUTURE.
BE SURE TO NOTE THE SYS COMMAND WHICH
LINKS SUPERMON TO THE COMMODORE
MONITOR.

SO ™o Y

SIMPLE ASSEMBLER
.A 200¢ LDA #$12

.A 2002 STA $8000,X
.A 2085 (RETURN)

IN THE ABOVE EXAMPLE THE USER
STARTED ASSEMBLY AT 20@@ HEX. THE
FIRST INSTRUCTION WAS LOAD A REGISTER
WITH IMMEDIATE 12 HEX. IN THE SECOND
LINE THE USER DID NOT NEED TO TYPE THE
A AND ADDRESS. THE SIMPLE ASSEMBLER
PROMPTS WITH THE NEXT ADDRESS. TO EXIT
THE ASSEMBLER TYPE A RETURN AFTER THE
THE ADDRESS PROMPT. SYNTAX IS THE SAME
AS THE DISASSEMBLER OUTPUT.

DISASSEMBLER
.D 2000
(SCREEN CLEARS)
oy 2008 A9 12 LDA #S%512
«, 2002 9D 9P 89 STA $8000,X
., 2005 AA TAX
«, 2006 AA TAX

(FULL PAGE OF INSTRUCTIONS)
DISASSEMBLES 22 INSTRUCTIONS
STARTING AT 2@Q@Q HEX. THE THREE BYTES
FOLLOWING THE ADDRESS MAY BE MODIFIED.

Appendix F

USE THE CRSR KEYS TO MOVE TO AND MODIFY
THE BYTES. HIT RETURN AND THE BYTES

IN MEMORY WILL BE CHANGED. SUPERMON
WILL THEN DISASSEMBLE THAT PAGE AGAIN.

PRINTING DISASSEMBLER
.P 20080,20840

2080 A9 12 LDA #8512

2082 9D 20 88 STA $8000,XY.
2005 AA TAX

203F A2 20 LDX #$00

TO ENGAGE PRINTER, SET UP BEFOREHAND:
OPEN 4,4:CMD4

ON 4.0, ACCESS THE MONITOR VIA A CALL

SYS 54386 (*NOT* A BREAK) COMMAND

SINGLE STEP
.1
ALLOWS A MACHINE LANGUAGE PROGRAM
TO BE RUN STEP BY STEP.
CALL REGISTER DISPLAY WITH .R AND SET
THE PC ADDRESS TO THE DESIRED FIRST
INSTRUCTION FOR SINGLE STEPPING.
THE .I WILL CAUSE A SINGLE STEP TO
EXECUTE AND WILL DISASSEMBLE THE NEXT.
CONTROLS:
< FOR SINGLE STEP;
RVS FOR SLOW STEP;
SPACE FOR FAST STEPPING;
STOP TO RETURN TO MONITOR.
{ON BUSINESS KEYBOARDS--
USE 8,¢<,6 AND STOP].

FILL MEMORY
.F 10808 1108 FF

FILLS THE MEMORY FROM 1908 HEX TO
1180 HEX WITH THE BYTE FF HEX.

GO RUN
.G

GO TO THE ADDRESS IN THE PC
REGISTER DISPLAY AND BEGIN RUN CODE,.
ALL THE REGISTERS WILL BE REPLACED
WITH THE DISPLAYED VALUES.
.G 1000

257

Appendix F

258

GO TO ADDRESS 1¢@#@# HEX AND BEGIN
RUNNING CODE.

HUNT MEMORY
.H CP%0 DOBO® 'READ

HUNT THRU MEMORY FROM C@@@ HEX TO
DAP® HEX FOR THE ASCII STRING READ AND
PRINT THE ADDRESS WHERE IT IS FOUND. A
MAXIMUM OF 32 CHARACTERS MAY BE USED.
.H COpQ DPB® 20 D2 FF

HUNT MEMORY FROM CP@@ HEX TO D@@®
HEX FOR THE SEQUENCE OF BYTES 20 D2 FF
AND PRINT THE ADDRESS. A MAXIMUM OF 32
BYTES MAY BE USED.

LOAD
.L

LOAD ANY PROGRAM FROM CASSETTE #1.
.L "RAM TEST"

LOAD FROM CASSETTE #1 THE PROGRAM
NAMED RAM TEST.
.L "RAM TEST",98

LOAD FROM DISK (DEVICE 8) THE PROGRAM

NAMED RAM TEST.
THIS COMMAND LEAVES BASIC POINTERS
UNCHANGED.

MEMORY DISPLAY

.M 0000 B989

: 9000 00 81 02 B3 24 85 06 @87
: 0P@8 88 B9 PA PB BC @D PE @F

DISPLAY MEMORY FROM @888 HEX TO
P80 HEX. THE BYTES FOLLOWING THE .:
CAN BE ALTERED BY TYPING OVER THEM
THEN TYPING A RETURN.

REGISTER DISPLAY
.R

PC IRQ SR AC XR YR SP
.; 0000 E62E @1 02 03 @4 @5

DISPLAYS THE REGISTER VALUES SAVED
WHEN SUPERMON WAS ENTERED. THE VALUES
MAY BE CHANGED WITH THE EDIT FOLLOWED
BY A RETURN.

Appendix F

USE THIS INSTRUCTION TO SET UP THE
PC VALUE BEFORE SINGLE STEPPING WITH
.1

SAVE
.S "PROGRAM NAME",01,0808,0C80

SAVE TO CASSETTE #1 MEMORY FROM
8PP HEX UP TO BUT NOT INCLUDING @C80
HEX AND NAME IT PROGRAM NAME.
.S "@:PROGRAM NAME" ,08,1200,1F50

SAVE TO DISK DRIVE #@ MEMORY FROM
12¢@ HEX UP TO BUT NOT INCLUDING 1F5@
HEX AND NAME IT PROGRAM NAME.

TRANSFER MEMORY
.T 1000 1100 5000

TRANSFER MEMORY IN THE RANGE 1000
HEX TO 1189 HEX AND START STORING IT AT
ADDRESS 5009 HEX.

EXIT TO BASIC
X
RETURN TO BASIC READY MODE.

THE STACK VALUE SAVED WHEN ENTERED WILL
BE RESTORED. CARE SHOULD BE TAKEN THAT
THIS VALUE IS THE SAME AS WHEN THE
MONITOR WAS ENTERED. A CLR IN

BASIC WILL FIX ANY STACK PROBLEMS.

Program |. CONTROL.

109 PRINT" {CLEAR}{@2 DOWN}{REV} SUP

ERMON! !

118 PRINT" {DOWN} DISSASSEMBLER ~
{REV}D{OFF} BY WOZNIAK/BAU
M

12¢ PRINT" SINGLE STEP {REV}I

{OFF} BY JIM RUSSO B

136 PRINT"MOST OTHER STUFF {REV},bHA
LT{OFF} BY BILL SEILER

15¢ PRINT"{DOWN}TIDIED & WRAPPED BY
JIM BUTTERFIELD"

259

Appendix F

170 L=PEEK (52)+PEEK(53)*256:5YS1536
:M=PEEK (33) :N=PEEK (34)

180 POKE52,M:POKES53,N:POKE48,M:POKE
49,N:N=M+N*256

218 PRINT" {92 DOWN}LINK TO MONITOR ~
-—- SYS";N

220 PRINT:PRINT"SAVE WITH MLM:"

239 PRINT".S ";CHRS(34);"SUPERMON";
CHRS$ (34);",01"; : X=N/4096:G
0OSUB25¢9

249 X=L/4896:GOSUB250:END

250 PRINT","; :FORJ=1T04:X%=X:X=(X-X
$)*16:IFX$>9THENX$=X%+7

260 PRINTCHRS (X%$+48); :NEXTJ:RETURN

Program 2. SUPERMON 4.0

: 0600 A9 CB 85 1F A9 @C 85 20

@608 A5 34 85 21 A5 35 85 22
: 0610 AO 00 20 38 86 D@ 16 20
: 0618 38 g6 F@ 11 85 23 20 38
: 0620 06 18 65 34 AA A5 23 65
: 0628 35 20 43 096 8A 29 43 26
: 0630 20 5¢ 096 90 DB 60 EA EA
.t ©#638 A5 1F D@ 02 C6 20 C6 1F
.: 0640 Bl 1F 60 48 A5 21 DO 02
.t 0648 C6 22 C6 21 68 91 21 60

: 0650 A9 89 CS5 1F A9 06 ES5 20
: 0658 60 AA AA AA AA AA AA AA
: 0660 AA AA AA AA AA AA AA AA
: 0668 AA AA AA AA AA AA AA AA
@670 AA AA AA AA AA AA AA AA
#678 AA AA AA AA AA AA AA AA
: 0680 AD FE FF 08 85 34 AD-FF
: 0688 FF 0@ 85 35 AD FC FF 00
9699 8D FA 63 AD FD FF 00 8D
: 0698 FB #3 00 00 A2 98 DD DE

: @6AP FF 00 DU OE 86 B4 8A da

260

Appendix F

3

e 00 es e se se

LYY B Y'Y

te oo

26A8
P6BY
p6B8
p6ceo
p6ecs
26D@
g6D8
P6EQD
Q6E8

P6FQ
Q6F8
2700
g708
2710
8718
8720
@728
2730
8738

2749
2748
8750
2758
2769
2768
2770
2778
2780
2788

2790
2798
BTAD
#7A8
3789
37B8
PICa
g7Cs
37D@
@7D8

AA
FF
9A
09
@2
20
A9
79
D7

54
4c
FA
60
g2
D@
a2
FE
E5
81

FA
FA
D7
Cl
FD
D@
1B
FE
DE
Cl

9]
4]
20
98

B5-

20
39
4cC
44
D7

BD
29
FA
B4
E6
98
%)
FA
99

D7
A4
60
A2
95
Fl
4c
38
FC
FA

)
a0
99
FA
20
EB
22
85
D@
FA

20
20
92
D7
A6
90
D5
BA
D7
20

E9
48
%)
FB
DE
D7
29
g9
29

B@
D7
E6
2
FA
60
CE
E5
A8
%)

20
20
15
%)
A8
20
65
FE
3D
20

68
31
FA
20
DE
ac
D@
D4
20
98

FF
60
A2
D@
D6
Cc9
8D
20
60

DE
20
FD
B5
68
AD
FA
FB
@D
29

AF
CA

A6

99
FA
Cl
FD
20
Al
BO

FA

‘FA

20
63
D@
A5
EE
29
92
D7

oo
CA
a2
28
FC
20
a0
6B
20

AE
31
D@
FA
9D
gB
4%
8D
1B
44

FA
FA
DE
60
]
FA
85
AF
FB
34

aa
20
20
D7
11
B5
4cC
81
FA
A2

48
19
2C
B4
D6
F@
20
D7
98

26
D5
B2
48
gAa
g2
A5
1B
a2
D7

%)
a0
DO
Al
29
%)
FD
FA
81
249

4cC
20
44
9¢
20
81
9A
FA
a9
aa

BD
EA
A2
FC
FB
F9
g1
20
D7

g2
CA
E6
BD
@2
AC
FD
a2
60
29

n
A

20
65
FB
39
18
98
%)
FD
65

1B
44
D7
14
CaA
FB
FA
4J0)
20
30

E8
4cC
3%
D@
69
60
20
57
20

9A
D@
FE
aa
CA
gc
A4
98
20
92

92
44
20
81
D5
AD
65
A6
20
FA

FB
D7
20
85
FA
20
ago
20
44
20

261

Appendix F

262

e e es e

.

@TED
g7E8
@7F3
B7F8
0800
2808
0810
9818
2820
2828

P830
#8338
n84a
2843
9859
2858
2860
2868
2874
878

2880
7888
3899
9898
A8AD
P8A8
08BYO
28B8
p8Ceo
@8C8

@8DP
P8D8
@8ED
@8ES
@8F0Q
g8F8
2900
8908

98
D7
C9
F@
D7
CF
D7
B4
0a
gc

17
A6
B@
29
a2
B2
FF
a9
FC
D2

79
A2
2a
D3
13
Cc9
FC
QE
00
45

68
98
20
02
65
99
13
29

D7
9D
@D
1cC
99
FF
90
20
0o
Cc8

D7
DE
DD
8D
A9
8E
A9
29
Ccé
FF

D5
aa
48
FC
AC
E8
)
BD
BD
FD

FC
20
22
38
FB
@B
29
FF

C9
10
Fg
8E
co
C9
B6
34
Bl
E8

20
D@
4C
@D
g4
U
16
64
B5
4cC

20
29
20
29
1cC
Bl
88
51
57
20

20
5C
D7
A4
90
4A
27
74}

27
B2
22
0o
9D
@D
EQ
D5
FB
E4

31
92
BA
a2
A2
22
85
FC
D@
BA

17
Al
EB
A2
32
FB
D@
FF
FF
CA

AA
FC
A6
FC
g1
B@
29
B9

DA
E8
EQ
)
19
Fg
20
A2
DD
B4

D5
20
D4
A5
a0
A9
B5
Ao
F2
D4

D7
FB
FC
26
Fo
BO@
F2
90
o
D@

E8
1)
B4
AA
Cc8
17
80
24

14
20
20
21
B2
29
D@
20
10
D@

29
CA
29
FC
3%
93
29
85
A9
Af

20
20
o
EJ
QE
1cC
96
20
Fo
D4

D@
8A
60
19
60
Cc9
4A
4A

29
CF
D@
20
ES8
20
EC
20
22
F3

39
FA
81
8D
8D
20
76
FB
91
2C

31
68
23
A5
20
FF
45
@3
60

21
86
AD
21
A8
22
AA
4A

98
FF
Fl
6B
20
63
86
AQ
DY
29

D5
3]
FA
gE
@9
D2
FC
84
29
20

D5
FC
20
D@
FF
5C
90
FD
20
20

Cc8
B4
1cC
88
4A
Fo
BD
4A

Appendix F

X} ..

L LR Y I T R TRY Y

e e e

2910
2918

0920
2928
8930
@938
2949
9948
2950
@958
2960
#968

29740
2978
2980
2988
2999
998
POAQ
29A8
29B0@
g9B8

poce
pocs
29D0
29D8
AOEQ
99ES8
P9FQ
A9F8
BAQD
0AQ8

gAl10Q
2Al18
PA20
PA28
BA3Q

4A
20

FF
8F
2B
88
Bl
20
90
F@
2B
a2

a2
69
4cC
44
D7
g2
2B
FB
29
D4

B5
F8
a2
gA
A9
DA
FF
85
13
0a

9A
8D
8D
8D
BA

29
20

29
AA
4A
D@
FB
Al
F@
60
@22
A9

2E
3F
31
D7
A9
8E
FC
84
CA
20

29
AD
85
a2
23
B2
%)
91
E8
%)

4cC
@5
83
g1
8E

gF
AA

23
98
90
FA
20
FA
A2
A8
B9
oo

aB
20
D5
29
g4
an
)
FC
FA
81

98
2D
FC
F@
A2
20
85
A9
A9
8D

55
g2
@22
@2
86

D@
BD

8D
AQ
28
Cc8
5C
20
@3
B9
9E
g0

a2
D2
20
92
A2
g2
29
20
%)
FA

D7
@2
4c
a3
24
34
99
AQ
2E
49

D6
68
68
68
@2

g4
44

1cC
a3
4A
88
FC
cC
CccC
5E
FF
AQ

22
FF
81
FA
20
20
64
35
B@
a0

20
85
E7
20
8D
D5
AD
8D
8D
E8

20
8D
8D
8D
58

AQ
FF

@2
E®Q
4A
D@
a0
1cC
89
FF
20
@5

88
CA
FA
ga
)
34
FC
F3
E9
A9

2B
FB
FB
D2
89
78
FB
4E
48
AE

Cco
g4
@2
%)
20

80
20

98
8A
29
F2
A2
a2
22
1
8D
JE

DO
D@
)
20
8D
D5
20
F@
4C
83

D5
AD
)
FF
a2
AD
FF
E8
E8
96

FC
g2
a2
%)
34

A9
85

29
F@
20
60
21
c8
99
8D
ac
ac

F6
EA
20
44
9
20
85
a5
BA
85

D@
QE
CD
60
8E
FA
ga
CE
A9
a2

68
68
68
@2
D5

263

Appendix F

264

BA38
QA4Q
PA48
PASQ
gA58

gA60
2a68
aA79
an78
2A89
2n88
PA9D
@A98
JAAD
2AAS8

oABD
PAB8
BACH
@ACS
SADY
@AD8
GAED
JAESB
QAFQ
GAF8

2BAG
gB@28
oBlo
2B18
aB20
@B28
gB39
PB38
2B49
2848

2B5@
2B58

20
20
)
FB
20

35
FF
81
g2
CA
3F
1o
A2
1E
3%

84
82
8E
F@
00
53
5E
E@
83
A5

29
FE
FF
51
B3
FE
D%
9D
2F
20

g5
FA

23
FE
@2
20
35

F3
Foa
FaA
A2
D@
AQ
92
22
Cc9
B

FC
E8
2B
n4

Q
(V)

Ab
FF
FE
DY
FF

E6
an
90
FF
CA
pa
Ad
29
AD
ca

AE
2

D5
D4
85
17
F3

D@
F4
a0
23
F9
@5
88
20
20
aF

85
9D
B2
E6
B5
FF
20
2o
1A
C9

FE
D@
oB
4%
D@
Do
AD
44
ac
FA

1B
C8

85
20
FC
D7
Cc9

@23
4c
20
20
A2
4A
D@
CF
Fg
20

FB
10
A2
DE
A5
8E
BD
D@
AC
E8

Ba
C5
BC
29
D@
A9
7B
D7
a2
20

32
D@

BS5
31
AD
20
r7

4C
5B
44
79
g3
6E
F6
FF
F5
78

A9
B2
03]
F@
DE
gc
9E
E2
1C
A9

Do
88
57
EQ
)
29
g2
AC
Cc9
99

10
FA

AQ
D5
g1
gE
F@

BA
FD
D7
FA
68
11
CA
C9
20
D7

30
E8
%)
7B
2§

32
FF
A2
32
30

CA
DO
FF
FE
aA
DF
C5
1C
9D
2B

gB
AE

29
AD
@2
FC
F9

D4
a0
8E
08
38
a2
D@
@D
F7
A4

9D
D@
86
A2
-

AA
)
26
Fo
B@

20
EB
a9
oo
29
FE
B5
a2
D@
98

4cC
1B

g
3%}
85
a0
20

Cc9
20
11
48
E9
6E
ED
Fo
FE
FB

10
DB
DE
1%
FC
BC
20
EQ
15
21

E8
19
BD
D@
DF
a9
D@
Fo
29
D@

9A
a2

Appendix F

e so s

s oo

s e

2B60
2B68
2B790
gB78
aB8Q
PB88
#B9Y
gB98

ABAQ
JBAS
2BB@
oBB8
gBC@
@BC8
2BD@
2BD8
@BE®
@BES8

ABF@
gBF8
aceg
aCces8
gCl@
gcls
aczae
acas
aC30
pC38

pC4ag
aCc4s8
acso
acss
ACcoa
gCo8
acrae
aC78
aCc8a
pCcss

19
D@
88
64
41
31
E6
86

E8
30
49
30
49
49
a0
3%
44
49

40
21
4D
29
58
23
23
19
1B
1A

AE
g0
53
AQ
88
94
28
Ad
74
%)

F5
g3
D@
FC
20
D5
FE
B4

86
99
a2
22
a2
@2
a0
20
9A
29

29
81
91
2C
24
5D
9D
AE
23
5B

A8
15
84
D8
54
g2
6E
8A
74
pa

CA
B9
F8
a0
79
4c
oo
A6

B5
83
45
45
45
45
22
11
19
19

62
82
92
23
24
8B
8B
69
24
5B

AD
9C
13
62
44
20
74
)
72
22

CA
FC
A5
85
D5
D8
D@
B5

A6
C9
23
33
33
B3
44
22
22
22

13
ae
86
28
a0
1B
1D
A8
53
A5

29
6D
34
5A
Cc8
B4
F4
20
44
0o

8A
a0
DE
FB
20
FD
11
DD

B4
47
D@
D@
D@
D@
33
44
44
44

78
3%
4A
24
0@
Al
Al
19
19
69

20
9C
11
48
54
28
cC
AA
68
a0

AC
29
91
84
17
29
98
10

28
60
28
@8
28
g8
D@
33
33
33

A9
%)
85
59
1C
9D
%)
23
Al
24

2%
A5
A5
26
68
84
4A
A2
B2
1a

1cC
91
FB
FC
D7
A8
F@
a2

60
38
49
49
49
49
8C
D@
D@
D@

aa
3%
9D
%)
8A
8A
20
24
g0
24

iC
69
69
62
44
74
72
A2
32
1A

a2
FB
20
AQ
20
29
PE
28

co
60
29
29
29
29
44
8C
28
28

0o
59
2C
pa
1C
1D
29
53
1]
AE

%)
29
23
94
E8
B4
F2
74
B2
26

265

Appendix F

. s se ws

aCcog
aCco8
acag
@CA8
acBg
aCcB8
pCcco
gces

26
48
44
DB
pa
FD
B9
33

72
44
50
FA
D1
2o
D4
Fa

72
44
2C
20
FB
D4
TF
pa

88
A2
41
30
)
FD
FD
AR

c8
Cc8
49
FB
F8
)
X%}
AA

c4
54
4E
%)
FC
4D
4A
AA

Program 3. Changes For SUPERMON 3.0.

266

2% 88 ® o8 ga b oee

se pe e a0 = o »

s on ..

3

B6D@

POED
P6ES
POFQ
P6F8

8738

@748
8750

8760

8798
BTA0
@7A8

g7Cce
@g7Ccs
B7Dd
@7D8
PTED
27E8

@TF8
P800
0808
2819
#818

#8309
#8409

20

79
E7
A7
4C

81

FA
E7

FD

3%
20
EB

D5
4c
97
E7
EB
E7

Fo
E7
CF
E7
B4

6A
B

EB

FA
98
E7
F7

FA

00
99

20

29
92
E7

FD
56
E7
20
E7
9D

1C
90
FF
90
20

E7
DD

E7

20
B9
B@
E7

(41

20
15

A8

81
FA
20

D@
FD
20
EB
C9
19

8E
Cé
Cc9
B6
D@

20
4cC

Cc9

29
60
DE
20

29

CA
A6

FA

FA
28
B6

EE
20
92
E7
27
@2
pa
9D
@D

E®Q
FD

CD
56

20

BE
20
AE
CD

97

FA
DE

a0

0o
20
E7

4C
81
FA
A2
D@
E8

29
10
Fo
29
A2

FD
FD

FO

E7
EB
@6
FD

E7

(1%
D@

20

20
97
99

9A
FA
Bo
20
14
20

21
B2
29
D@
2

20
29

ca
46
80
5E
an
FD
FA
AA

F9

29
E7
B2
cAa

290

20
65

D5

97
E7
14

FA
00
29
g0
20
CF

20
E8
20
EC
%)

D5
81

26
48
g0
FB
28
a0
%)
AA

60

AA
20
9A
3]

92

97
29

FD

E7
20
85

0o
29
917
20
EB
FF

BE
20
B6
86
AQ

FD
FA

Appendix F

p878
p88d

P8ED

2980
#988
8990
9998

@9A8
?9B@
2988
: @9C@

: POES

LI 1Y

" 00 L - *® a0 s s
. e

e et e

¢ o8 0% & @

gAlQ

: PA3D
: PA38
: PDA4Q

: PAS50
PA58
: QA60

+ QA70
: @AA8
AB38

B8Y
: ¢B88

: BCCo

*e s

T e 4% 4% 408 08 40V o

Program 4. SUPERMON 4.0 Checksum.

106 REM SUPERMON 4 CHECKSUM
110 DATA7331,12186,10071,10387,1082
9,9175,10314,9823,9715,871

D2
15
20

4c
97
E7
a2

FB
20
FD
B5

oA

9A

BA
29
20

FB
20
g1

81
20
9D

41
CD

55

4,3852

120 DATA8850,9748,7754,10247,10423,
19948,10075,6093,5492,7805

:5=1536

FF
FE

75

CD
E7
A9
8E

84
CA
20
20

B2

4cC

8E
BF
9A

20
g1
F3

FA
B@
20

20
FD

FD

4C
29

E7

FD
20
24
gA

FC
FA
81
EB

20

Fl

g6
FD
FD

6A
F3
D@

X"/
gF
97

15
4C

7F

56
6A

A6

29
92
A2
B2

20
20
FA
E7

D@

FE

a2
85
20

E7
Co
93

20
20
E7

FE
D8

FD

FD
E7

B4
81
FA

%))
20

21
B@
a9
20

FD

20

58
BS5
CD

20
F7
4cC

97
CB
AC

20
FD

X"/

AQ
20

60

FA
20
3%}
D@

F3
E9
A9
A7

18

7B

29
AQ
FD

gE
F@
56

E7
E7
1C

6A
20

4A

2C
CDh
AD

3%}
20
8D
FD

FQ
4C
@23
FD

AD

FC

D@
20
AD

FC
F9
FD

8E
A4
g2

E7
A8

FA

20
FD

1C

29
97
B9
29

@5
56
85
D@

FA

68

FD
pa
290

)
29
Cco

11
FB
FQ

20
20

02

267

Appendix F

139 FORB=1T0O21:READX:FORI=STOS5+79:N
=PEEK (I) : Y=Y+N

149 NEXTI:IFY<>XTHENPRINT"ERROR IN
BLOCK #"B:GOTOl60

15¢ PRINT"BLOCK #"B" IS CORRECT"

160 S=I:Y=@0:NEXTB:PRINT"CHECK THE F
INAL, SHORT BLOCK BY HAND"

Program 5. Changes For SUPERMON 3.0 Checksum.

194 REM SUPERMON 3 CHECKSUM

11¢ DATA7331,12186,10467,10880,1112
4,10005,10906,10196,9951,8
813

12¢ DATA8852,9329,19239,8457,108334,
10423,11047,10311,6093,549
2,7805:5=1536

268

Appendix F

PET MICROMON

An Enhanced Machine
Language Monitor

Micromon is for Upgrade and 4.0 BASICs, all memory sizes, all
keyboards and is in the public domain. If you have enough memory,
you can add the additional commands of “’Micromon Plus’’ as well.
“Plus” is from $5B00 to $5F48 and you will want to move Micromon
from $1000 up to $6000.

There is quite a bit of typing here so there are two checksum
programs which will find and flag any errors. See the instructions for
typing in Supermon.

Micromon Instructions

SIMPLE ASSEMBLER

.A 2000 LDA #$12

-A 2002 STA $8000,X

.A 2005 DEX:GARBAGE
In the above example, the user started assembly at 2000 hex. The first
instruction was load a register with immediate 12 hex. In the second
line the user did not need to type the A and address. The simple
assembler retypes the last entered line and prompts with the next
address. To exit the assembler, type a return after the address
prompt. Syntax is the same as the Disassembler output. A colon (:)
can be used to terminate aline.

BREAK SET

.B 1000 OOFF
The example sets a break at 1000 hex on the FF hex occurrence of the
instruction at 1000. Break set is used with the QUICK TRACE
command. A BREAK SET with count blank stops at the first
occurrence of the break address.

COMPARE MEMORY

.C 1000 2000 C000
Compares memory from hex 1000 to hex 2000 to memory beginning at
hex C000. Compare will print the locations of the unequal bytes.

DISASSEMBLER
.D 2000 3000
., 2000 A9 12 LDA #$12
-, 2002 9D 00 80 STA $8000,X
. 2005 AA TAX

269

Appendix F

Disassembles from 2000 to 3000. The three bytes following the
address may be modified. Use the CRSR KEYS to move to and
modify the bytes. Hit return and the bytes in memory will be
changed. Micromon will then disassemble that line again.

Disassembly can be done under the control of the cursor. To
disassemble one at a time from $1000.

.D 1000

If the cursor is on the last line, one instruction can be disassembled
for each pressing of the cursor down key. If it is held down, the key
will repeat and continuous disassembly will occur. Disassembly can
even be in reverse! If the screen is full of a disassembly listing, place
the cursor at the top line of the screen and press the cursor up key.

EXIT MICROMON
E

Combine the killing of Micromon and exit to BASIC.

FILL MEMORY
.F 1000 1100 FF

Fills the memory from 1000 hex to 1100 hex with the byte FF hex.

GO RUN

.G
Go to the address in the PC Register display and begin run code. All
the registers will be replaced with the displayed values.

.G 1000

Go to address 1000 hex and begin running code.

HUNT MEMORY

.H C000 D000 ’READ
Hunt through memory from C000 hex to D000 hex for the ASCII
string “‘read”” and print the address where it is found. Maximum of
32 characters may be used.

-H C000 D000 20 D2 FF
Hunt memory from C000 hex to D000 hex for the sequence of bytes 20
D2 FF and print the address. A maximum of 32 bytes may be used.
Hunt can be stopped with the STOP key.

KILL. MICROMON
K

Restore the Break vector and IRQ that was saved before Micromon
was called and break into the TIM monitor. A return to Micromon can
be done with a Go to the value in the PC register.

LOAD
.L”“RAM TEST**,08

270

Appendix F

Load the program named RAM TEST from the disk. Note for cassette
users: To load or save to cassette. Kill Micromon with the K command
to return to the TIM monitor. Then use the TIM monitor L and S
commands to load and save to the cassettes. This has to be done
because of the repeat keys of Micromon. BASIC 4.0 users then can
return to Micromon with a Go command to the PC value, but BASIC
2.0 users should return to BASIC, then SYS to Micromon because the
TIM overwrites the IRQ value for loads and saves with a filename.

MEMORY DISPLAY

.M 0000 0008
.2 0000 30 31 32 33 34 35 36 37 1234567
.: 0008 38 41 42 43 44 45 46 47 89ABCDE

Display memory from 0000 hex to 0008 in hex and ASCII. The bytes
following the address may be modified by editing and then typing a
RETURN.

Memory display can also be done with the cursor control keys.

NEW LOCATER

.N 1000 17FF 6000 1000 1FFF

.N 1FBO 1FFF 6000 1000 1FFF W
The first line fixes all three byte instructions in the range 1000 hex to
1FFF hex by adding 6000 hex offset to the bytes following the
instruction. New Locater will not adjust any instruction outside of the
1000 hex to 1FFF hex range. The second line adjusts Word values in
the same range as the first line. New Locater stops and disassembles
on any bad op code.

CALCULATE BRANCH OFFSET

.0 033A 033A FE
Calculate the offset for branch instructions. The first address is the
starting address and the second address is the target address. The
offset is then displayed.

QUICK TRACE

Q
.Q 1000
The first example begins trace at the address in the PC of the register
display. The second begins at 1000 hex. Each instruction is executed
as in the WALK command, but no disassembly 1s shown. The Break
Address is checked for the break on Nth occurrence. The execution
may be stopped by pressing the STOP and = (left arrow on business)
keys at the same time.

REGISTER DISPLAY

.R
PC IRQ SR AC XR YR SP
.: 0000 E455 01 02 03 04 05

271

Appendix F

Displays the register values saved when Micromon was entered. The
values may be changed with the edit followed by a RETURN.

SAVE

.§ “1;:PROGRAM NAME"’,08,0800,0C80
Save to disk drive #1 memory from 0800 hex up to. but not including,
0C80 hex and name it PROGRAM NAME. See note in LOAD
command for cassette users.

TRANSFER MEMORY
.T 1000 1100 5000

Transfer memory in the range 1000 hex to 1100 hex and start storing it
at address 5000 hex.

WALK CODE

W
Single step starting at address in register PC.

W 1000
Single step starting at address 1000 hex. Walk will cause a single step
to execute and will disassemble the next instruction. Stop key stops
walking. The] key finishes a subroutine that is walking, then
continues with the walk.

EXIT TO BASIC

X
Return to BASIC READY mode. The stack value saved when entered
will be restored. Care should be taken that this value is the same as
when the monitor was entered. A CLR in BASIC will fix any stack
problems. Do not X to BASIC then return to Micromon viaa SYS to
the cold start address. Return via a SYS to BRK (SYS 1024) or SYS to
the Warm start of Micromon (Warm start=Cold start+3). An X and
cold start will write over the TIM break vector that was saved.

CHANGE CHARACTER SETS
Z

Change from uppercase/graphics to lower/uppercase mode or vice
versa.

HEX CONVERSION
.$4142 16706 A B 0100 0001 0100 0010

A hex number is input and the decimal value, the ASCII for the two
bytes, and the binary values are returned. The ASCII control values
are returned in reverse.

Hex conversion can also be scrolled with the cursor control keys.

DECIMAL CONVERSION
#16706 4142 A B 0100 0001 0100 0010

272

Appendix F

A decimal number is input and the hex value, the ASCII for the two
bytes, and the binary values are returned.

BINARY CONVERSION
-%0100000101000010 4142 16706 A B

A binary number is input and the hex value, the decimal number, and
the ASCII values are returned.

ASCII CONVERSION
A 41 65 0106 0001

An ASCII character is input and the hex value, decimal value, and
binary values are returned. Because of the quote, the control characters
can be determined also.

ADDITION
.+ 1111 2222 3333

The two hex numbers input are added, and the sum displayed.

SUBTRACTION
-3333 1111 2222

The second number is subtracted from the first number and the
difference displayed.

CHECKSUM
.& A000 AFFF 67E2

The checksum between the two addresses is calculated and
displayed.

MICROMON INSTRUCTIONS:

SIMPLE ASSEMBLE
BREAK SET
COMPARE MEMORY
DISASSEMBLER

EXIT MICROMON
FILLMEMORY
GORUN

HUNT MEMORY

KILL MICROMON
LOAD

MEMORY DISPLAY
NEW LOCATER
CALCULATE BRANCH
QUICK TRACE
REGISTER DISPLAY
SAVE

TRANSFER MEMORY
WALK CODE

EXIT TO BASIC
CHANGE CHARACTER SETS
HEX CONVERSION
DECIMAL CONVERSION

TANXSHOIOOZZrAIOTMITINT >

273

Appendix F

% BINARY CONVERSION
‘ ASCIICONVERSION
+ ADDITION
- SUBTRACTION
& CHECKSUM
Micromon also has repeat for all keys.
Micromon is executed by the following: SYS 4096 as listed in
Program 2, where it resides in $1000 to $1FFF.
For 8032, make the following changes for Micromon operation.
In location the X stands for the start of Micromon. Values in hex.

Location Old Value New Value

X3E7 08 10 To display 16 instead

X3EC 08 10 of 8 bytes.

X3F6 08 10

X427 08 10

XD18 08 10

XDA3 08 10

XCFC 28 50 To fix scroll.

XD7B 28 50

XE16 83 87

XE20 28 50

XE24 Co 80

XE26 04 08

XE37 27 4F

XE46 28 50

X681 24 00 To print all characters
in Walk command.

Micromon Plus Instructions
PRINTING DISASSEMBLER
.(Shift) D 1000 1FFF

The same as the Disassembler but no ., printed before each line. Also
the ASCII values for the bytes are output at the end of the line.

FORM FEED SET
I

Sets a form feed for printout. Gives 57 printed lines per page. Works
with the Shift D and Shift M commands.
.I ‘“Heading"’

Sets form feed with a message to be printed at the top of each page.
IX

Cancels form feed.
PRINT LOAD ADDRESS
.J *‘File name’’

Read the load address of the file and print it in hex. Device number 8
is used.

274

Appendix F

KILL MICROMON ADDITIONS

.(Shift) K
Kill Micromon and its additions and BRK to the TIM monitor. This is
the same as the unshifted K command except now a G command will
reinitialize Micromon and the additions.

LOAD FROM DISK

.(Shift) L ““filename’’
This is the same as the normal load command except that the disk
(device #8) is used as the default, not the cassette.

PRINTING MEMORY DUMP

.(Shift) M F000 F100
The same as the normal Memory dump, but does not print the .: and
prints out 16 hex bytes and the ASCII for them.

PRINT SWITCHER

.P
If the output is to the CRT then switch the output to the printer
(device #4). If the output is not to the CRT then clear the output
device and restore the output to the CRT.

P06
Make device #6 the output device if the current output is to the CRT.

SEND TO PROM PROGRAMMER

.U 06 7000 7FFF
This command will send out bytes to a PROM programmer on the
IEEE bus. The first byte is the device number and the two addresses
are the range of memory to output. A CHR$(2) is sent first to start the
programmer. This is followed by the memory bytes as ASCII
characters separated by spaces. After all bytes have been sent, a
CHR$(3) is sent to stop the programmer. Micromon then does a
checksum on the range to compare against the programmer
checksum. Although this is for a particular programmer, it could be
modified for others.

SPECIFY LOAD ADDRESS
.Y 7000 ‘‘Filename’’

This command allows a file to be loaded starting at the address you
specify and not the load address it would normally load into. The disk
(device #8) is used for loading.

TEXT FLIP FOR 8032 & FAT 40's

.(Shift) Z
This is for 8032 and Fat 40’s to go from Text to Graphics mode or vice
versa.

275

Appendix F

DOS SUPPORT
@or.>

This reads the error channel from disk device number 8.

.@ disk command or . > disk command
This sends the disk command to disk device number 8.

.@%0 or. > $0
This reads the directory from disk device number 8. The SPACE BAR
will hold the display, any other key will start it again, and the STOP
key will return to command mode.

CONTROL CHARACTERS
.(Up arrow)g
This command will print the control character of the ASCII character
input.
Examples of controls:
Ring bell
Tab set and clear
Insert line
Text mode
Graphics mode
Cursor down
Cursor up
Home cursor
Clear screen
Delete line
Erase end
Erase begin

<<Ene 0L Z8 2N

MICROMON PLUS INSTRUCTIONS

(Shifty D PRINTING DISASSEMBLER
I HEADING AND FORM FEED CONTROL
J PRINT LOAD ADDRESS ‘
(Shift) K KILL MICROMON ADDITIONS
(Shifty L LOAD FROM DISK
(Shifty M PRINT MEMORY DISPLAY
PRINTER SWITCHING
SEND TO PROM PROGRAMMER
SPECIFY LOAD ADDRESS
TEXT/GRAPHICS FLIP
DOS SUPPORT COMMANDS
DOS SUPPORT COMMANDS
(Up arrow) CONTROL CHARACTERS

(Shift)

®vN<C™

276

Appendix F

Program |. Checksum For Micromon.

19 DATA 15463,14894,142990,11897,12
453,13919,14116,11715,1257
5,14571

20 DATA 13693,11853,12903,14513,12
137,15006,12654,13291,1243
6,13899

30 DATA 15366,9999,11834,13512,128
92,14475,15149,14896,15782

9511
49 DATA 12171,8985
108 Q=4096

114 FOR BLOCK=1TO032

120 FOR BYTE=@T0127

138 X=PEEK (Q+BYTE) : CK=CK+X

149 NEXT BYTE

159 READ SUM

160 IF SUM <> CK THEN PRINT" ERROR ~
IN BLOCK #"BLOCK:GOTO178

165 PRINT" BLOCK"
BLOCK" IS CORRECT

1790 CK=0:0=0Q0+128

189 NEXT BLOCK

Program 2. Micromon.

1098 4C @C 18 4C 6F 10 4C CF
1008 FF 4C D2 FF 78 A5 92 A6
191@¢ 93 8D ES5 @2 8E E6 @2 AD
1918 F6 1F AE F7 1F 8D E3 @2
1920 8E E4 @92 AD F@ 1F AE F1
1028 1F 85 92 86 93 A5 90 Ae
1938 91 CD EE 1F D@ @5 EC EF
1038 1F F@ 10 8D 9E #2 8E 9F
1049 92 AD EE 1F AE EF 1F 85
1048 99 86 91 AD EC 1F AE ED
1950 1F E@ 80 B@ @8 85 34 86
1958 35 85 3¢ 86 31 A9 10 8D
1060 84 92 8D 85 @2 A9 @@ 8D

277

Appendix F

1278

1068
1078
19878

1080
1988
1299
1998
10A0
16A8
19B0
10B8
10Co
10C8
10D@
19D8
10E9
10ES8
19F0
10F8

1100
1108
1110
1118
1129
1128
1130
1138
1149
1148
1150
1158
1160
1168
1179
1178

86
AD
AD

20
29
20
20
8D
18
F5
8D
1F
6C
B2
FB
94
0o
29
A2

95
Fl
4C
E5
A8
B2
17
3C
@3
FD
AC
pA
85
F8
B@
AC

g2
7B
7A

55
18
29
29
A2
c9
A2
87
85
FB
A2
D@
g2
8D
20
g2

FA
69
17
FB
@D
A9
20
18
4C
D@
94
11
FD
10
53
94

8D
g2
B2

19
A9
10
10
B2
2E
1D
@2
FB
29
B2
29
D6
8C
52
BS

68
AD
11
8D
91
g1
55
90
C5
B2
g2
18
98
20
20
g2

A2
E9
E9

A2
52
20
A9
A2
Fo
DD
8A
BD
CA
D@
B4
FC
@2
19
FA

9D
92
A5
91
B2
8D
19
1B
11
E6
D@
AD
65
7F
D1
D@

B2
1
po

42
D@
55
oo
FF
F9
92
gA
Bl
19
g2
FC
D6
20
CA

91
g2
FD
@2
60
95
20
29
29
FE
45
91
FE
11
10
1D

58
8D
8D

A9
23
19
8D
9A
C9o
1F
AA
1F
E5
A2
Do
FB
4F
D@
BD

B2
AC
A4
98
A9
B2
13
gA
TF
20
Fo
@2
85
29
20
Fo

43"/
7B
7A

2A
A9
A9
94
20
20
Do
BD
85
6C
po
@3
60
12
FA
91

CA
93
FE
E5
8%

11
11
11
3B
E5
65
FE
ga
D5
EB

38
@2
g2

20
3F
2E
g2
A4
Fo
13
BO
FC
E3
B4
EE
A9
A2
60
@2

D@
02
38
FC
Fo
E6
20
B@
E6
19
20
FD
20
11
19
A2

Appendix F

1181

1188

1199
1198
11A0
11A8
11BQ
11B8
11Co
11c8
11D@
11D8
11EAQ
11E8
11FQ
11F8

1200
1208
12190
1218
1229
1228
1230
1238
1249
1248
12589
1258
1260
1268
1279
1278

1280
1288
1290
1298
12A0
12A8
12B0@

X"
81
18
g1
20

B2
AD
D@
20
18
D9
E8
E®
B2
B2

39
D@
A2
B2
D@
AC
B9
20
E7
D@
47
20
20
14
B2
Al

99
BD
CA
E8
8A
88
12

Al

wn
L

20
60
PB
99
D@
89
EC
1
A2
14
20
20
20
E8

20
EC
X0
D@
F2
94
DE
13
19
EE
19
PE
22
AC
c9
12

QE
EF
D@
D@
8E
B2
85

FB
Cl
52
4C
18
17
12
B2
4C
18
po
29
26
D@
77
20

6F
8E
AQ
BA
20
B2
4C
11
20
20
20
1E
13
8B
E8
88

BD
l1E
D2
g1
88
60
FB

AC
FD
19
93
20
8D
20
81
8E
20
20
A4
19
F1
18
g6

18
88
po
Cc8
8E
D@

9@
AB
B3
13
48
A2
g2
Bl
D@

E9
Fd
60
Cc8
B2
AD
84

95
Fo
20
19
A4
89
13
FB
19
2B
A4
18
Cc9
Fo
90
19

9@
@2
Bl
E8
11
@5
10
@D
12
15
18
20
26
Fd
FB
Fl

1E

20
98
20
8B
FC

B2
@B
AE
20
18
B2
11
20
4C
18
18
9D
@D
1C
CcC
Cc9

BC
20
FB
EC
20
20
20
AQ
20
D@
20
2B
EQ
gF
B@
gE

29
20
B7
20
1A
B2
60

Fo
28
18
g1
20
AE
9@
3B
93
20
Cco9
A3
Fd
8E
9D
8D

EQ
55
DD

3B
13
39
2C
AE
E3
52
13
@3
AD
1D
96

AD
AD
12
Al
18
20
38

g2
13
Fo
18
6F
94
@D
19
19
A4
27
22
22
97
A3
Fo

24
19
A3
B2
19
11
14
20
18
20
19
68
D@
96
20
P2

15
15
AA
12
AE
B6
A4

279

Appendix F

280

12B8
12Co
12C8
12D0
12D8
12E0
12E8
12F@
12F8

1309
1308
1310
1318
1320
1328
1339
1338
1349
1348
1358
1358
1360
1308
1370
1378

1389
1388
1399
1398
13A0
13A8
13B9
13B8
13Co
13C8
13D@
13D8
13E0

FC
g1
BO@
g9
B4
g4
1E
g2
EQ

4A
D@
A2
c8
F1l
B2
o
B2
29
20
AQ
Cb
CD
AS
83
24

Fo
85
@2
97
48
48
20
68
14
11
18
19
20

AA
Cc8
17
86
4A
AQ
8D
98
8A

29
F2
g1
99
60
B9
AQ
2A
19

2C
F8
F9

-
1

B2
co9

25
B2
AS
A9
AD
6C
A4
49
AE
99
D@
A2
52

10
60
co9
4A
4A
80
96
29
Fg

20
60
29
Fd
A8
36
B85
88
CA
18
4C
1F
1F

~r
wu

A9
FF

CE
D@
9E
B2
F2
9E
18
FF
94
g8
EE
2E
19

B1
AB
22
AA
4A
A9
B2
8F
@B

88
Bl
F1l
A2
B9
1F
OE
D@
D@
A9
50
D@
3]
83
19
Fa

84
11
D@
85
1F
g2
20
4C
B2
20
4cC
A9
20

88
4A
Fo
BD
4A
1%}
29
AA
4A

D@
FB
10

F6
8D
93
F6
EA
g3
15
gB
@3
gz
8D
20

g2
A9
g8
A8
48
8D
19
AE
D@
D6
4A
3A
13

65
90
13
98
29
AA
g3
98
98

FA
20
CccC
Cco
1E
93
B2
69
4Cc
20
BD
BD
20
Fd
84
AD

D@
B2
A9
AD
28
89
19
12
gD
13
12
20
18

FB
2B
29
l1E
gF
BD
8D
AQ
48

c8
Al
8B
23
8D
B2
2E
3F
52
AC
B85
86
D7
CA
g2
84

16
8D
8o
F3
48
@2
D@
20
20
20
20
29
A9

99
4A
a7
BO@
D@
DC
8B
@3
4A

88
12
B2
99
92
A9
92
20
19
13
g1
g1
18
8D
D@
B2

CE
85
85
1F
48
48
F8
39
13
AE
55
18
28

Appendix F

13E8
13F0
13F8

1400
1498
1410
1418
1420
1428
1430
1438
1449
1448
1459
1458
1460
1468
1470
1478

1480
1488
1490
1498
14A0
14A8
14B0
14B8
l4cad
14C8
14Dp
14D8
14E0
14ES8
14F0
14F8

1500
15048

20
A9
0o

g2
Fo
20
20
4C
20
13
15
20
26
85
g2
9D
CA
3F
A3

g2
Cc9
20
A4
9D
D@
94
94
8E
84
A2
g2
A9
D@
ES
FO

F@
AD

23
12
Al

A9
24
@9
3B
29
AC
A9
20
26
18
FD
20
8D
30
AQ
g2

20
3A
A4
FB
A3
D7
g2
g2
93
15
@26
Fg
30
Fl
1E
g3

@6
92

19
28
FB

2E
Co
19

10
13
3A
g1
10
4C
86
A4
g2
14
@5

g6
Fo
15
84
g2
8E
A2
20
g2
BD
Ed
gF
B@
PE
20
20

2¢
22

A9
29
29

20
62
A9
88
20
20
8D
18
C9
55
FE
18
E8
BD
4A
D@

19
1E
BO@
FC
E8
52
g
C3
AA
F6
?3
AD
1E
96
84
84

81
CD

28
10
F

29
D@
22
D@
g1
B3
6F
85
@D
19
A2
C9
E@
8D
6E
F6

Cco
C9
gF
85
9D
g2
8E
12
BD
1E
Do
96
20
g2
15
15

15
89

20
AQ
C9

10
oA
20
DB
18
15
@2
FD
Fo
20
20
20
g3
g2
A4
Fo

@D
20
20
FB
A3
A2
89
AE
36
20
14
g2
81
9@
BD
CA

20
g2

B9
g8
20

C9
A9
g9
A9
A9
20
4c
86
23
4c
8E
Fo
D@
38
g2
E9

Fo
Fa
84
A9
g2
0o
g2
96
1F
84
AC
C9
15
gE
EF
Do

81
Fd

13
A2
BO

22
14
10
92
28
D6
5C
FE
20
18
A4
F4
Fl
E9
6E
A2

22
Fl

1
L

30
E8
8E
AD
02
20
15
8B
E8
88
BD
le
D2

15
@3

281

Appendix F

282

1510
1518
1520
1528
1530

1N
L I0

1540
1548
1550
1558
1560
1568
1570
1578

1580
1588
1590
1598
15A0
15A8
15B0@
15B8
15C4o
15C8
15D#@
15D8
15E0
15E8
15F0
15F8

1600
1608
1610
1618
1620
1628
1630
1638

4C
02
D@
D@
28

x
14}

23
F8
8C
10
@2
15
FB
74

19
89
68
14
AE
C9
D@
48
AA
7D
02
18
2o
82
4c
68

68
68
g2
80
58
4C
AD
AD

91
F@
1F
6F
C8
CA
B9
AD
6F
20
8D
8E
20
g2

20
02
EE
4C
88
47
23
4A
68
02
8E
69
8D
D@
55
8D

8D
8D
AS
@2
AD
6F
7A
7B

i5
2E
20
AE
D@

~ N
i

FC
94
a2
AB
75
71
B8
A9

84
DD
94
8E
a2
60
60
42
29
28
7E
a1
7A
21
13
7E

7C
7A
91
20
7C
10
g2
22

20
AD
13
91
65

n

fa)
a0
B2
20
12
02
a2
15
a7

15
A3
82
10
60
38
A9
42
gF
68
82
8D
@32
AD
D8
g2

B2
g2
8D
D7
82
2C
CD
CD

3C
93
11
g2
AE

. ¥l
no

91
91
B3
A9
A5
8D
8E
85

8E
@2
Fo
E8
C9
60
91
4A
4C
29
8C
7B
A9
13
68
68

68
A5
81
18
29
86
99
98

18
B2
99
390
91
3B
FB
FB
15
20
FC
72
73
9E

88
Fo
23
8E
30
CD
4C
20
32
EF
7F
g2
80
ES8
8D
8D

8D
990
g2
AD
10
@2
g2
82

AC
C9
A
6A
g2
02
88
AQ
20
8D
20
B2

s}
<

4C

32
gD
4C
89
90
8C
a9
32
18
8D
g2
68
8D
10
7F
7D

7B
8D
BA
12
Fo
50
D@
D@

8B
9D
98
10
10
D
D@
41
E7
70
B8
A5
8D
93

AE

B2
g2
@3
@2
10
18
8D
C
68
69
86
g3
82
g2

g2
82
8E
E8
a3
1F
6D
65

Appendix F

1640
1648
1650
1658
1660
1668
1670
1678

1680
1688
1690
1698
16A0
16A8
16B9
16B8
16C8
16C8
16D¢
16D8
16E@
16E8
16F0Q
16F8

1709
1788
1710
1718
1720
1728
1730
1738
1740
1748
1750
1758
1760
1768

AD
D@
14
@2
1F
20
20
82

A9
29
¥3
A9
9D
C9
A2
12
9cC
g2
10
5C
g6
19
AQ
12

8D
AZ
AE
85
7A
7C
42
20
82
@2
9B
8D
18
5D

9cC
55
4E
9A
48
30
@B
85

24
E4
4c
g1
a2
EE
53
AD
82
A9
C9
29
10
AD
8D
E8

82
178
80
91
B2
02
AC
4C
A9
29
g2
AQ
8D
18

02
A9
86
AD
4Cc
19
19
FB

8D
FF
93
8D
CE
F@
4c
9A
8E
80
@D
60
C9
86
4E
AD

42
3D
g2
AD
48
48
TF
18
2o
5D
4c
g2
8D
8D

D@
80
02
F5
1F
8D
AD
86

8C
Fo
10
86
9C
04
85
02
9D
8D
Fog
18
@D
02
E8
F@

8E
43
SA
82
AD
AD
82
8D
8D
18

8E
@2
8F

5D
8D
99
1F
17
89
7B
FC

02
FB
C9
02
B2
C9
19
AE
82
86
11
20
Do
Fog
CE
1F

81
E8
78
g2
7B
7D
49
98
9A
8D
14
Al
8E
g2

AD
86
D2
48
20
82
g2
20

29
Cc9
4Aa
D@
AD
6F
A9
9B
A9
g2
C9
FC
4F
22
13
AE

B2
3E
AD
85
@2
g2
4c
g2
82
9A

02
8E
8E

9D
g2
AE
AD
55
AQ
AE
52

52
23
D@
4F
12
D@
1)
@2
49
29
29
18
20

E8
Fl

A9
49
81
9%
48
AE
8E
8E
8D
g2
E6
20
@2
90

g2
30
80
F4
19
20
7A
19

12
D@
56
CE
ES8
3E
F@
8D
D@
g6
D@
29
55
A9
2C
1F

3B
ES
g2
AD
AD
7E
19
99
9B
8E
17
5D
20
g2

283

Appendix F

284

1770
1778

1780
1788
1790
1798
1770
17A8
17B0
17B8
17C¢
17C8
17D0o
1708
17ED
17E8
17F0
17F8

1809
1808
1810
1818
1820
1828
1839
1838
1840
1848
1850
1858
1860
1868
1879
1878

1888
1888

20
g6

g2
18
g2
AA
10

88
c8
88
9@
8A
FB
19
18
8D
18

60
18
86
A5
32
18
@9
06
48
CA
g2
20
20
18
a9
20

D@
gA

g6
10

20
20
D@
BD
4C
D@
38
Bl
AD
g2
6D
6D
88
85
92
20

20
B@
FE
FB
18
48
10
69
B5
Da
20
84
6F
99
8D
DA

gF
gA

10
Cc9

3C
gA
1A
F6
93

Bl
FB
8F
Fl
AQ
Al
10
FD
g2
60

4C
@3
60
48
AA
8A
18
3A
FC
F3
A4
18
18
g1
97
29

18
A

C9
57

18
11
Bl
1E
19
F@
FB
ED
g2
FB
B2
g2
FA
86
8E
18

18
20
A5
4A
68
20
69
60
95
60
18
B@
90
60
@2
20

60
8D

@D
Do

AE
90
FB
D@
AC
@3
AA
8E
Fl
99
91
91
30
FE
93
85

BO
5D
FC
4A
29
@9
F6
A2
FA
A9
C9
08
@7
4c
20
A4

20
97

Fo
g3

94
13
20
?6
8B
8C
ED
@2
FB
10
FB
FB
S9E
29
32
FB

Fo6
18
20
4A
gF
10
90
g2
68
a9
20
20
AA
8E
A4
18

99

A
EE

B2
AC
C3
20
g2
8B
8D
99
C8
88
Cc8
20
20
5D
20
86

20
85
1A
4A
20
68
@2
B5
95
8D
Fo
A4
20
10
18
C9

18

20
8C

D@
8C
12
E7
c9
82
g2
1E
AD
18
Bl
3B
4C
18
A4
FC

60
FD
18
20
32
4C
69
FA
FC
97
F9
18
6F
A9
C9
20

2A
A4

Appendix F

1890
1898
18A0
18A8
18B@
18B8
18C@
18C8
18D0
18D8
18EQ
1BES8
18F0
18F8

1900
19098
1910
1918
1920
1928
19390
1938
1949
1948
1950
1958
1960
1968
1970
1978

19890
1588
1990
1998
19A0
19A8
19B0
19B8

18
60
a2
@D
C9
85
13
18
85
78
E8
8D
AD
85

7A
20
20
60
81
10
A9
A9
FC
48
29
@9
29
3B
1a
20

18
30
4C
18
81
20
Fo
9A

20
C9
69
Do
EF
9E
E8
D@
B¢@
AD
A9
11
EE
91

B2
52
3B
20
FB
20
7C
B85
D#
20
18
10
19
20
18
52

AD
19
8E
20
@2
a4
DB
6C

99

3A

g8
F8
Do
28
6A
B
A9
40
7F
E8
1F
28

60
19
19
6F
Cl
3B
85
69
¥3
55
A9
A2
E8
47
AD
19

82
20
19
5D
20
18
20
94

18
28
60
4C
@7
60
90
29
2o
E8
8D
A9
85
60

8D
Bl
CE
18
FB
19
FB
E6
EE
19
20
0o
E®
19
7B
AD

g2
23
20
18
30
20
60
0o

oD
29
20
93
@8
20
F7
D7
85
29
4E
3b
99
8D

89
FB
89
90
Fo
CE
A9
FB
94
68
2C
BD
1C
AD
g2
81

20
19
4c
8D
19
19
1C
4C

97
gF
06
10
20
Ccé
60
18
AF
10
E8
8D
AD
7B

02
20
g2
@B
@3

g2
D@
g2
A2
A9
76
Do
TA
20
a2

1A
4c
18
82
8D
19
AE
8E

02
28
10
A5
cC
18
20
A9
60
8D
A9
13
EF
82

AQ
1A
D@
A2
4C
g2
85
87
60
2E
@D
1F
F5
g2
1A
20

18
93
20
@2
89
Do
80
10

38
99
C9
9B
FF
AD
AE

28
49
3C
E8
1F
8E

o0
18
Fo
89
8E
60
FC
E6
98
20
4c
20
AQ
29
18
1A

20
10
FC
8E
g2
F8
@2
AQ

285

Appendix F

19Co
19C8
19D9
19D8
19E0Q
19E8
19F9
19F8

1A09
1A08
1A10
1A18
1A20
1A28
1A30
1A38
1A40
1A48
1A50
1A58
1A69
1A68
1A70
1A78

1A80
1A88
1A90
1A98
1AAQ
1AAS8
1AB@
1ABS
1ACH
1ACS8
1AD#S
1ADS8
1AEQ
1AES8

gl
84
85
F9
DB
C9
c8
87

Cco
4C
56
19
10
Fo
C9
10
E6
2C
86
F9
C9
40
10
4Cc

19
52
D@
g8
86
8E
4C
A9
20
19
52
92
29
A6

84
9D
DA
C9
20
@D
ca
@2

C9
12
F3
D@
C9
20
@3
Cco
20
D@
CA
Cc9
53
D@
Cc9
93

20
19
15
c8
20
10
93
24
2F
20
19
g2
10
FB

D4
A9
20
2D
@26
Fo
10
C9

40
1A
20
El
D
6F
Fo
@D
F9
F4
20
@D
Do
@6
4C
10

3B
209
AD
D@
1A
29
14
2@
1B
CC
A2
2E
CA
8D

88
g2
g6
Fp
10
@B
F@
4C

D@
C9
BC
4C
Fo
18
FA
F@
17
20
26
D@
F7
20
Do
20

19
13
91
B
18
31
20
29
20
1A
@4
93
D@
93

84
85
10
1A
C9
91
c7
D@

26
4C
18
93
D2
29
85
BA
20
60
10
EC
AD
A4
D4
g1

20
11
g2
AD
4c
18
55
18
E6
20
A9
g2
EF
G2

D1
DB
Co
C9
22
DA
Do
E1l

20
D@
A5
10
C9
gF
D4
Cc9
g6
18
C9
AD
o)
F6
20
18

oB
90
30
91
93

19
20
1A
CF
30

60
8E

84
A9
20
22
Fo
E6
EA
AD

22
AD
96
20
2C
Fd
20
2C
10
85
20
87
Cca
4c
E3
20

18
2A
19
g2
10
Cco
A2
13
20
1A
18
a0
A5
92

96
A3
Fog
D@
36
D1
AD
a0

F3
20
29
76
D@
C3
26
D@
C9
C9
Fo
B2
C9
93
F6
3B

29
98
190
19
4C
1A
2E
18
52
20
gE
20
FC
02

Appendix F

1AF0
1AFS8

1884
1B@8
1B10
1B18
1B240
1B28
1839
1B38
1B49
1B48
1B50
1B58
1B64d
1B68
1B790
1B78

1B89
1B88
1B99
1B98
1BAJ
1BAS8
1BB@
1BBS8
1BCH
1BCS8
1BDd
1BD8
1BE®
1BES8
1BF@
1BF8

1Co0
ices

20
A5

7F
20
8A
Cc9
10
a5
52
Cd
cd
8E
52
4C
FC
FB
Do
20

20
3A
18
FB
26
65
A5
65
8D
20
52
1B
93
20
1A
85

83
20

52
FB

C9

20
62
A9
A9
19
co
4C
10
19
93
20
20
F7
06

Fg@
B9
649
48
FC
FC
FE
FC
93
52
19
20
10
13
4Cc
FB

1B
11

19
AA

20
19
29
D@
22
92
A6
49
pd
20
20
10
17
78
28
19

@B
BC
85
@26
68
85
65
85
02
19
68
52
20
18
93
85

20
1C

A5
20

a8
8A
10
@A
20
20
FB
D@
a3
5B
13
A2
1C
1B
20
Cc9

C9
29
FE
FB
65
FC
FB
FC
48
68
AA
19
F4
20
10
FC

11
CA

FC
52

B@
18
Cc9
A9
29
@9
A5
83
4c
1B
18
g4
20
20
52
@D

30
gF
AS
26
FB
?6
85
60
48
29
A9
29
1B
2F
A2
20

1C
D@

20
19

oA
69
22
14
10
10
FC
4C
83
BO
20
A9
83
92
19
Fog

9@
60
FC
FC
85
FB
FB
20
20
1A
g
CcC
20
1B
gF
17

20
F7

FA
8A

A9
40
Fo
20
28
60
AC
DP9
CF
F8
C3
2o
1B
1B
28
oF

cad
68
48
g6
FB
26
A9
17
52
18
20
1A
52
20
A9
1C

78
4Cc

1A
29

12
AA
g4
29
B@
20
g
DC
4c
20
1A
85
85
CA
60
C9

C9
68
A5
FB
68
FC
10
1C
19
20
36
4C
19
E6
a0
20

1B
52

287

Appendix F

288

1C10
1C18
1C20
1C28
1C386
1C38
1C49
1C48
1C50
1C58
1C60
1C68
1C70
1C78

1Cc849
1C88
1C90
1C98
1cag
1CAS8
1CB@
1CB8
1CCo
1CC8
1CD#
1CD8
1CEDQ
1CES8
1CF@
1CF8

1D0o9
1Do8
1D19
1D18
1D20
1D28
1D39
1D38

19
A4
g2
93
20
85
4c
11
20
10
78
92
g2
2A

AP
29
D@
92
B2
88
AD
10
Dg
AD
D8
FD
9cC
3A
24
38

El
2@
co
28
D6
1A
00
12

4A
18
4D
10
2A
FB
50
84
52
20
AD
86
85
1C

na
13
18
g2
8D
1cC
92
AD
86
6F
C9
AS
82
Fo
Fo
A5

Cc6
45
3A
85
13
20
8D
A9

26
C9
4C
20
1C
A5
1C
FC
19

ES
93
90
20

8C
11
AQ
8D
93
AD
@2
A2
68
22
18
C5
AQ
1A
12
FD

FE
1E
D@
FB
4C
GE
8C
421}

FB
20
E8
B
18
FC
20
AD
20
1C
82
AD
86
3C

92
90
20
92
g2
93
20
22
A8
C9
D@
85
g1
c9
CE
ES

D@
B@
11
9¢
39
1E
92
85

26
Fg
8D
18
A5
65
2A
91
13
00
AE
SE
91
18

B2
b
18
@2
20

1A
D¢d
68
11
ED
FE
20
2C
9C
28

DD
B5
18
82
1D
20
AQ
9E

FC
F9
4C
4C
FB
FE
1C
B2
18
6C
E6
82
58

8C
AD
Bl
98
3B
20
18
24
AA
D¥
A5
A9
8C
Fo
82
85

8D
AD
A5
E6
c9
AB
2C
4c

60
60
E8
Fo6
65
85
20
85
4c
EC
@2
AE
69
52

93
94
FB
6D
19
1A
4C
A5
68
7D
C4
19
1E
16
Fo
FD

87
87
FB
FC
24
12
20
4A

20
A9
4C
17
FD
FC
13
FB
93
1F
85
9F
20
19

g2
P2
6D
93
4c
18
93
SE
49
A5
85
8D
C9
Co
CA
B9

g2
g2
69
20
Fo
A9
4F
12

Appendix F

1D4¢9
1D48
1D5¢
1D58
1D6@
1D68
1D70
1D78

1D8d
1D88
1D9@
1D98
1DAG
1DAS8
1DB@
1DBS8
1DC¥
1DC8
1DDd
1DD8
1DEd
1DES
1DF@
1DF8

1E00
1E08
1E10
1E18
1E20
1E28
1E30
1E38
1E40
1E48
1E50
1E58
1E60

l1Eo08

4Cc
1A
A5
A5
g2
Fa
F@
A5

E6
45
87
Fo
A5
Cé
9E
15
4C
Ab
8D
g2
FC
13
@2
g2

8E
20
Al
C8
28
Bl
c8
A9
A9
g2
Fa
75
8D
YA

Cc2
4C
D8
C5
AQ
1A
12
FD

FE
1E
32
1D
FB
FC
20
1E
AD
FC
9C

20
11
Do
20

8C
52
FB
85
85
c7
Cc6
29
13
38
F3
1E
A2
A5

1C
39
Dg
85
g1
C9
CE
69

D@
99
C9
D@
E9
20
49
20
1D
85
g2
FB
BE
Fa
E@
B9

B2
12
4C
FE
FD
91
FE
9D
AC
60
88
85
a2
AY

20
1D
EC
FE
20
2C
9C
28

DD
@3
3A
27
28
D9
1E
D5
20
FD
38
AS
1E
a7
EE
13

A9
4C
Cc3
A9
A¢d
FD
CA
20
29
20
20
FB
85
A4

3B
Cco
A5
A9
8C
Fg
g2
85

8D
4C
Fg
20
85
13
4Cc
10
15
86
A5
FE
20
B@
8B
A2

2C
AD
12
ga
Cco
98
D@
80
10
8C
75
86
A7
Co

19
91
C4
19
1E
16
Fg
FD

87
C2
@26
15
FB
A9
96
20
1E
FE
FD
E9
AB
F3
B2
g

20
1D
A9
85
A2
D@
Fl
CA
Cgo
1E
1E
FC
A5
91

20
D@
85
8D
C9
C9
15
90

g2
1C
C9
1E
B@
Y]
10
B6
A5
A9
ED
o0
12
CE
AD
Al

4D
A2
83
c7
g4
F8
A2
10
28
Cc9
AA
A9
AA
C4

B3
Fo
FD
9C
3A
24
18
El

20
AD
24
38
82
85
20
1A
FB
10
9C
85
20
9C
8B
FB

19
1587
85
A9
88
Cé
27
FA
D@
20
20
FF
Fa
A9

289

Appendix F

290

1E70
1E78

1E80
1E88
1E99
1E98
1EAQ
1EAS8
1EBQ
1EBS8
1EC@
1ECS8
1ED®
1ED8
1EEQ
1EES8
1EF®
1EFS8

1F@0d
1Fp8
1rle
1F18
1F20
1F28
1F39
1F38
1F49
1F48
1F50
1F58
1Fo60
1F68
1F70
1F78

a0
20

97
@D
7F
40
30
40
40
8o
11
19
10
62

85
59
1C

1D
19
1B
5B
A8
6D
34
5A
c8
28
CC
A2
B2
26
26
20

85
99

@2
97
C9
@2
22
02
a2
22
22
22
22
13
20
9D
g
23

23
AE
23
5B
AD
9C
11
48
54
84
4A
A2
32
26
48
20

AA
18

20
g2
20
45
45
45
45
44
44
44
44
78
59
2C
58
5D

9D
69
24
AS
29
A5
AS
26
68
74
72
74
B2
72
44
29

18
@A

8C
60
B@
@3
33
33
B3
33
33
33
33
A9
4D
29
24
8B

8B
A8
53
69
a9
69
69
62
44
B4
F2
74
X0
72
44
50

6f
aa

1E
Bl
g2
D@
Do
D@
Do
D@
Do
D@
D@
a0
91
2C
24
1B

1D
19
19
24
7C
29
23
94
E8
28
Ad

22
88
A2
43

20
gA

20
FD
29
88
08
28
28
8cC
8C
28
28
21
92
23
1]
Al

Al
23
Al
24
010
53
Ad
88
94
6E
8A
72
30
c8
C8
20

8C
A

99
c8
40
40
40
49
40
44
44
49
40
81

28
1cC
9D

0o
24
no
AE
15
84
D8
54
a9
74
v
44
1A
C4
@D
20

1E
8D

18
29
60
29
29
29
29
o)}
9A
29
29
82
4A
24
8A
8A

29
53
1A
AE

9C

13
62
44
B4
Fa
AA

1A
CA
29
49

Appendix F

1F80 52 51 20 20 53 52 20 41
1F88 43 29 58 52 20 59 52 20
1F90 53 50 41 42 43 44 46 47
1F98 48 4C 4D 4E 51 52 53 54
1FAG 57 58 2C 3A 3B 24 23 22
1FA8 2B 2D 4F 5A 4B 25 26 45
1FB® 4D 14 38 17 25 11 35 12
1FB8 9D 11 BS5 16 C8 11 BF 19
1FC8# BE 13 55 17 B9 16 5A 19
1FC8 BF 19 29 11 C9 16 BS 19
1FD@ 48 13 23 14 93 19 AA 1A
1FD8 4A 1B BD 1B 34 1C 43 1C
1FE@ 7B 1A 1F 1C 59 1C E2 1B
1FE8 77 1C B2 19 @8 14 55 13
1FF@ EB 15 B9 1C C6 15 8E 10
1FF8 BC 18 38 35 32 37 38 31

Program 3. Checksum For Micromon Plus.

18 DATA 15965,14778,13859,14282,14
416,17693,12979,12903,1767

6,21760
20 DATA 14416,17693,12979,12903
100 0=23296

110 FOR BLOCK=1TO08

1286 FOR BYTE=@TOl27

130 X=PEEK (Q+BYTE) : CK=CK+X

140 NEXT BYTE

156 READ SUM

160 IF SUM <> CK THEN PRINT" ERROR ~
IN BLOCK #"BLOCK:GOTO179

165 PRINT" BLOCK"

. BLOCK" IS CORRECT

1790 CK=0:Q0=0+128

18@ NEXT BLOCK

199 PRINT"ANY REMAINING PROBLEMS AR
E EITHER WITHIN THE FINAL"

200 PRINT"SHORT BLOCK OR WITHIN DAT

A STATEMENTS IN THIS PROGR
AM. "

291

Appendix F

Program 4. Micromon Plus.

292

5B@@
5B@8
5B1@
5B18
5B20
5B28
5B38
SB38
SB40
SB48
5B50
SB58
5B60
5B68
SB78
5B78

5B80O
5B88
SB9@
5B98
SBA@
SBAS8
5BB@
SBB8
5BCH
5BC8
5BD@A
5BD8
5BE@
5BES8
5BF@
5BF8

5C00
5C08
5C10

78
D@
9E
AE
92
B2
E3
AE
3E
28
31
@2
@2
e
8D
5F

6C
60
17
52
20
4C
AQ
8B
co
A9
68
E3
4C
29
@B
96

20
SB
85

A5
@5
@82
EF
A6
AD
@2
Fl
5F
85
A9
A9
8D
A2
87
85

FB
20
20
62
93
9B
%)
@2
83
24
29
5B
93
5C
20
D@

D5
A9
@D

90
EC
8E
6F
93
3C
8E
6F
AE
34
10
e
E7
@ac
B2
FB

po
39
EF
20
5C
60
Bl
C8
D@
EZ
1F
4C
60
AE
BA
E2

Fo@
53]
8D

A6
EF
9F
85
8D
5F
E4
85
3F
86
8D
8D
@2
DD
8A
BD

Ca
64
60
AB
20
A2
FB
99
19
@D
C9
9B
85
20
Fo
60

20
85
ES8

91
6F
@2
90
E5
AE
@2
92
SF
35
84
86
8D
15
BA
23

10
20
8E
5B
AE
l1E
20
F5
20
F@
B4
60
B@
co
20
E@

48
S6
82

CD
Fo
AD
86
@2
3D
AD
86
E@
85
@2
B2
E8
5F
AA
5F

E5
13
8C
20
68
29
60
69
@6
@9
90
20
85
EQ
2D
4C

Fl
8D
60

EE
30
EE
91
8E
S5F
Fo
93
80
39
8D
8D
B2
D@
BD
85

4C
61
@2
AB
D@
Fl
5C
A5
60
20
AF
CcC
D4
40
F1l
D@

4C
FC
29

6F
8D
6F
A5
E6
8D
6F
AD
BO
86
85
A2
58
13
22
FC

8E
99
20
62
E4
60
CccC
B@
AA
6F
20
FF
20
D@
A5
5D

F7
@3
39

Appendix F

5C18
5C20
5C28
5C30
5C38
5C49
5C48
5C50
5C58
5C60
5C68
5C78
5C78

5C89
5C88
5C99
5C98
SCAQ
5CAS8
5CB#@
SCB8
5CCa
5CC8
S5CD#
5CD8
5CE®
5CES8
5CF@
SCF8

5D0#@
S5D@8
5SD10
5D18
5D2@
5D28
SD30
SD38
5D40

64
61
5C
5B
68
20
A2
0o
69
29
4C
Fg
6C

8E
4C
4C
B2
AE

~
“

A3
B2
69
39
E7
20
69
24
60
4AC

5D
20
82
20
B2
06
06
D@
20

AE
90
20
A2
A2
g3
g4
Al
88
7F
29
19
C9

ES8
9B
9B
Fo@
E8
5C
B2
D@
20
8D
B2
29
Cc9

20
DD

20
@9
5D
55
84
60
60
ED
06

94
2B
AE
@5
B2
69
20
FB
D@
Cco9
60
Cco

82
60
60
31
@2
A2
20
F4
55
E7
8D
5C
@D
20
@6
5B

26
60
20
69
D1
AA
A4
20
60

B2
20
68
20
20
A9
Fl
20
F5
20
20
20
Fo

A2
A2
29
CE
Fo
14
89
A2
69
g2
E8
29
Fo@
9E
60
20

60
D@
8B
AQ
A9
A4
96
36
Fo

D&
31
D@
Fl
Fl
10
60

60
B@
@6
D@
5@

B2
B4
55
E7
1A
20
60
23
CA
60
92
cC
16
5D
co
52

Cco
F4
5D
@3
@8
96
D@
6B
@5

19
5C
EB
60
60
20
AD
5C
4C
B2
60
23
20

20
29
69
B2
A2
Fl
E8
D@
D@
A9
4C
FF
Cc9
68
gD
69

@D
A2
20
D@
85
D@
2F
20
20

20
20
4C
20
A9
B9
10
20
8E
A9
co
20
71

A7
C1
AE
D@
@6
60
EC
B2
Fa
20
9B
20
24
20
D@
20

F@
23"}
55
B2
AF
36
Cé
52
29

13
93
A8
13
10
63
A2
3B
60
20
@D

5D

5C
5C
E7
2C
208
BD
E8
A2
A9
8D
60
26
Fo
29
F6
C5

Fo@
20
69
AD
20
20
D1
69
60

293

Appendix F

294

5D48
SD589
5D58
SD60
5D68
5D78
SD78

5086
5D88
5SD9@
SD98
5DA0O
SDAS8
S5DB@
5DB8
5DC@
5DC8
5DD@
5DD8
5DE#
SDES8
SDF@
5DF8

SEBO
SE@B8
SE10Q
SE18
5E20
SE28
SE30
5E38
5E40
5E48
S5E5@
SES8
SE60
SE68

D@
AF
20
F7
29
6C
26

F@
90
DA
29
85
40
20
D@
43
D3
e
F@
5B
A5
4C
60

D@
Cco
F7
co
C9
@2
Fo
93

20
12
20
93
5F

Fé
20
E4
C9
55
Cc9
60

@8
ED
A9
F3
D4
D@
28
36
Fl
A9
ca
A5
ca
D3
8E
85

06
4C
5B
C9
4cC
2C
@82
60
8B
20
5E
29
60
AQ

20
E4
FF
@3
69
22
C9

9D
640
@2
5D
85
@B
Fl
20
4C
28
co
D3
4C
20
60
D3

20
D@
A9
49
D@
4C
@9
20
5D
@6
29
29
20
08

55
FF
Fo@
D@
4cC
D@
@D

A3
86
85
4cC
B@
20
4cC
D5
F7
85
49
29
D@
93
A9
AD

66
E4
6a
D@
cC
E8
80
29
20
60
52
68
60
84

69
Fg
FB
BA
93
7B
F@

@2
D1
DB
C9
AC
BA
F7
Fo
5B
D4
D@
64
@B
Fl
28
09

F4
20
85
@3
ac
@8
20
5C
26
8D

20
6C
D4

A9
C9
C9
20
60
A2
@ac

ES8
A9
20
5D
e
Fo
5B
A9
A9
85
@B
Fl
20
4C
85
ca

4C
AS
AF
4C
CE
A9
29
20
60
FC
A9
13
pe
AQ

20
D@
20
12
20
g0
Cco

E@
A3
cC
A9
co
A9
ca
6F
6F
AF
20
4c
D2
F7
D4
Cco

F7
F4
AD
8F
F3
GE
60
6E
8D
4§/
24
68
6C

ac

85
85
F@
5E
17
20
22

49
85
FF
@8
co
6F
4cC
20
85
AC
B6
F7
Fo
5B
A9
40

5B
4C
0o
F3
A9
28
4C
5D
FB
29
A2
4C
3E
8C

Appendix F

5E70@
SE78

SE80
SE88
SE90
5E98
SEAQ
SEAS8
SEB®
SEB8
5EC@O
SEC8
5ED@
5ED8
5EE®
SEE8
5EF@
SEF8

SFo@
5F@8
5F10
5F18
5F20
5F28
SF30
5F38
SF40

87
17

8BE
29
20
92
AS
89
90
FB
E9
60
7D
20
20
60
C9
81

F3
40
D@
CD
55
16
3A
82
31

a2
6C

60
1F
2A
a2
D4
60
@F
20
A9
29
6C
6E
8D
A9
40
SF

4C
D@
EA
49
59
5C
5E
5E
30

AQ
29

20
C9
6C
8E
20
20
AE
1A
B3
cc

20
5D
5D
e
D@
co

12
@3
4c
3E
BE
D8
62
D2
32

aa
9F

A4
B4
A5
93
E3
52
94
68
20
FF
29
86
20
85
06
4C

6A
4C
49
DA
5B
5C
5E
S5E
31

4cC

68
90
FD
B2
5B
69
@2
20
@9
2@
5C
D1
26
AF
20
D@

AD
gA
F4
aAa
89
D8
69
69
38

c4
34

20
Fl
Ab
20
A9
20
D@
3B
60
F8
20
20
60
AD
52
81

)
F4
580
CB
5B
5C
5E
5B
31

6F
85
FE
3C
@2
13
A
69
20
60

21
g4
20
e
F3
20

ce
C9
c4
ccC
6B
27
77
e
AA

20
4C

68
D4
8D
68
20
61
Al
D@
EF
4C
68
5F
26
ca
4cC
8C

C9
4C
49
5E
5C
S5E
S5E
5B
AA

295

Appendix F

VIC Micromon

VIC machine language programmers: here’s one of the most valuable
tools there 1s for working in machine language. Thirty-four
commands are at your disposal including single-step, hex conversion,
search, EPROM routines, and a relocator. If you aren’t yet working
with machine language, the instructions for entering and using this
program are easy to follow. As presented, this program takes up 4K
of memory from $4000 (16384 decimal) to $4FFF (20479), but there are
instructions for locating it elsewhere in RAM memory. To enter
Micromon directly, see the Tiny PEEKer/POKEr program with
Supermon 64 (in this Appendix). The commands for VIC Micromon
are the same as the PET/CBM version except as noted below.

VIC Micromon Instructions

Initialize Memory And Screen Pointers

.I 1000 1E00 1E
Define lJow memory as $1000 and high memory as $1E00 regardless of
the memory present. The screen is defined to start at the $1E page of
memory. The screen memory should always be on an even page
within the range of $1000 to $1E00. Odd page values result in
incorrect setup and operation of the VIC display. Although 3K of
RAM can be added at $400 to $FFF, this memory is not accessible for
use as screen memory.

Memory pages at $000 and $200 are accessible, but are not usable
since they are used for BASIC and kernal storage, working buffers,
and stack area. If the screen page is within the low to high memory
range specified, there can be usage conflict of the screen memory
pages. If the ’I”” command is used and exit is made to BASIC, the
NEW command must be invoked in the BASIC environment to clean
up the memory pointers used by BASIC.

Jump To Micromon Subroutine

.J 2000
The subroutine at $2000 is called while remaining in the VIC
Micromon environment. The assembly language subroutine should
exit by using a RTS instruction, which causes a return to the
command input sechion of VIC Micromon. The machine image as
shown by the Register display command 1s not used, nor is 1t
disturbed when the subroutine returns to the VIC Micromon.

Load
.L 2000 “TEST FILE’" 01

Search for and, if found, load into memory the data file on device #1
named TEST FILE. If the name is not specified, the first file found is

296

Appendix F

loaded. The data is loaded into memory starting at location $2000.
The last address loaded is determined by the length of the binary data
file. If the device number is not specified, it defaults to device #1,
which is the VIC cassette tape. The original memory addresses and
name of the last file read can be inspected by doing a Memory display
of the tape buffer which is at $375 for VIC Micromon.

Print Switcher

.P
If the output 1s to the screen, then switch the ouput to the RS-232
channel (device #2). If the output is not to the screen, restore the
output to the screen with the R5-232 channel left active until the
RS-232 output buffer is drained. Note that opening the RS-232
channel grabs 512 bytes for I/O buffering from the top of memory.

.P 0000

Regardless of the output, clear the RS-232 channel and set

output to the screen.

.P CCBB
If the output is to the screen, set CC into the R5-232 command
register at location $294 and BB into the RS-232 control register at
Jocation $293. Output is then switched to the RS-232 channel. This
command is invalid if output is not currently to the screen.

Command Register Format

Field Use Value Description
7,6,5 Parity Options -0 Parity disabled
001 Odd parity
011 Even parity
101 Mark transmitted
111 Space transmitted
4 Duplex 0 Full duplex
1 Half duplex
3,2,1 Unused
0 Handshake 0 3 line
1 x line

297

Appendix F

Control Register Format

Field Use Value Description
7 Stop Bits 0 1 stop bit
1 2 stop bits
6,5 Word Length 00 8 bits
01 7 bits
10 6 bits
11 5 bits
4 Unused
3,2,1,0 Baud Rate 0000 User rate
0001 50 Baud
0010 75
0011 110
0100 134.5
0101 150
0110 300
0111 600
1000 1200
1001 1800
1010 2400
Save

.S 2000 3000 “TEST FILE” 01
Save memory from $2000 up to, but not including, $3000 onto device
#1, which is the VIC cassette tape. If the device number is not
specified, it defaults to device #1. The name TEST FILE is placed in
the file header for the file saved.

Verify

.V 2000 “TEST FILE" 01
Search for and verify, if found, the data file on device #1 named
“TEST FILE.”” If the name is not specified, the first file found is
verified. The data is verified by reading the file and comparing 1t to
the data in memory starting at location $2000. If not specified, the
device defaults to device #1. If there is a mismatch, the message
ERROR is output to the screen at the end of the file verification.

Command End Tone

N
Enable the command end tone. A continuous tone will be generated
at the end of execution of the next command. The tone can be turned
off but still be enabled by just hitting the carriage return. No tone is

298

Appendix F

generated if there is a syntax error while inputting the next
command.

)
Disable the command end tone.

Program EPROM

.m 2800 2FFF 00
Program the 2716 type EPROM via the EPROM programmer on the
VIC User I/O port with data read from memory starting at location
$2800 and ending at location $2FFF. The last input parameter specifies
in hex the starting 256 byte page offset on the EPROM. If the low
order byte of the starting memory address is zero and the offset is
zero, then the programming starts with the first byte of the EPROM.
For example, to program only the last byte of the 2K EPROM with a
data byte from location $2FFF in memory, the command would be:

. 2FFF 2FFF 07

During programming, a compare of EPROM to memory is done

for each data byte just after it is written to the EPROM. Any mismatch
due to failure to program the EPROM results in output to the screen
of the mismatched memory location. If programming must be
terminated early, just hit the STOP key. No other means should be
used to abort EPROM programming. A warm restart or power down
while programming can damage the EPROM.

Read EPROM

-£ 2000 27FF 00
Load memory starting at location $2000 and ending at location $27FF
with data read from the EPROM via the EPROM programmer on the
VIC User /O port. The last input parameter specifies in hex the
starting 256 byte page offset on the EPROM. If the low order byte of
the starting memory address is zero and the offset is zero, then
reading starts with the first byte of the EPROM. For example, to read
only the last byte of the 2K EPROM and load that byte into memory at
location $10FF, the command would be:

.£ 10FF 10FF 07

During memory load, a compare of EPROM to memory is done

for each data byte just after it is written to memory. Any mismatch
because of failure to write the memory with data from the EPROM
results in output to the screen of the mismatched memory location.
The STOP key can be used to terminate the command early.

Compare EPROM
.=3000 37FF 00

Compare memory starting at location $3000 and ending at location
$37FF with data read from the EPROM via the EPROM programmer
on the VIC User I/O port. The last input parameter specifies in hex

299

Appendix F

the starting 256 byte page offset on the EPROM. If the low order byte
of the starting memory address is zero and the offset is zero, then the
reading starts with the first byte of the EPROM. For example, to read
only the last byte of the 2K EPROM and compare that with the data

byte in memory at location $37FF, the command would be:

.=37FF 37FF 07

Any mismatch between the EPROM and corresponding memory
data results in output to the screen of the mismatched memory
location. The STOP key can be used to terminate the command early.

Commands for VIC Micromon

VIC Micromon Instruction

SIMPLE ASSEMBLER
BREAK SET

COMPARE MEMORY
DISASSEMBLER

EXIT VIC MICROMON

FILL MEMORY

GORUN

HUNT MEMORY

INITIAL MEMORY & SCREEN PTRS
JUMP TO SUBROUTINE

LOAD MEMORY FROM DEVICE
MEMORY DISPLAY

NEW LOCATER

OFFSET OR BRANCH CALCULATE
PRINT SWITCHER

QUICK TRACE

REGISTER DISPLAY

SAVE MEMORY TO DEVICE
TRANSFER MEMORY

VERIFY MEMORY FROM DEVICE
WALK CODE

EXIT TO BASIC

ASCII CONVERSION

DECIMAL CONVERSION
HEXADECIMAL CONVERSION
BINARY CONVERSION
CHECKSUM MEMORY
COMMAND END TONE ENABLE
COMMAND END TONE DISABLE
ADDITION

SUBTRACTION

LOAD MEMORY FROM EPROM
PROGRAM EPROM FROM MEMORY
COMPARE EPROM TO MEMORY

Command

I3 st +-mpRex I XIT<L<-HOROWOZE == IO ONS >

300

Appendix F

Of the set of commands available on the PET version of
Micromon, only two were removed in the conversion to the VIC.
These were the K (Kill Micromon) and Z (change character sets)
commands. The K command is not necessary since the VIC doesn’t
have the TIM monitor. The function of the Z command, which is to
change character sets, is already provided for on the VIC by pressing
the VIC shift and Commodore keys at the same time. The rest of the
commands described for the PET Micromon (see elsewhere in this
appendix) all apply identically to the commands for VIC Micromon,
with the exception of the LOAD and SAVE commands, which have
different formats.

VIC Micromon is always entered from VIC BASIC by a SYS
16384 when it resides at $4000 to $4FFF. Either the E (Exit VIC
Micromon) or the X (Exit to BASIC) command would be used to exit
VIC Micromon and return to the BASIC environment. The difference
between these two commands is that the X command leaves the VIC
Micromon vectors in the IRQ and BRK interrupt vector locations
while in the BASIC environment. Also, the tape buffer is left defined
as beginning at $375. Thus, certain IRQ interrupt conditions such as
the moving of the cursor to the top or bottom of the screen with
output from a D, M, or $ command displayed will cause scrolling and
reentry into VIC Micromon. Also, if a BRK instruction is executed,
VIC Micromon will be reentered via its BRK interrupt handler.

The E command restores the IRQ and BRK interrupt vectors and
resets the tape buffer pointer to a value of $33C prior to exit to the VIC
BASIC environment. Thus ail active linkages and vectors to VIC
Micromon are removed, and the VIC behaves as if VIC Micromon
never existed. In particular, the E command should be used to exit
VIC Micromon when the normal VIC cassette tape LOAD, SAVE, and
VERIFY commands are to be used in the BASIC environment.
Otherwise, invalid results are likely to occur with some tape
operations.

Both the E and X commands expect the stack pointer value (as
shown for SP by the Register display command) to be the same as
when VIC Micromon was first entered via the BASIC SYS command.
If the value of SP or the part of the stack pointed to by SP is
overwritten, such as by the execution of faulty code, a clean exit to
BASIC by the E and X commands is unlikely. However, both the E
and X commands do check if BASIC has been initialized, and if not,
exit to BASIC is via an indirect jump to the address given at location
$C000. The address given in location $C000 is $E378, which is the
entry to initialize BASIC. In this case, the value of SP and the
contents of the stack aren’t important. Once in BASIC and regardless
of how the exit from VIC Micromon was made, any subsequent
access to VIC Micromon at $4000 is always by a SYS516384.

301

Appendix F

VIC Micromon as given here is located from $4000 to $4FFF. It
can be relocated to any 256 byte page boundary by making the
changes, as shown in the following example, which relocate VIC
Micromon from $4000 to $6000.

The example begins with VIC Micromon at $4000 and ends with
arelocated VIC Micromon in RAM at $6000 as well as the original at
$4000.

.T 4000 4FFF 6000

.N 6000 6003 2000 4000 4FFF

.N 6012 6E6D 2000 4000 4FFF

.N 6FB5 6FFE 2000 4000 4FFF W

Location Old Value New Value
6018 45 65
602A 43 63

- 6392 41C 6C
6650 45 65
66E7 45 65
6897 43 63

In order to access the relocated VIC Micromon at $6000, exit
using the E command and then from BASIC use SY524576.

Cartridge And Checksum
The VIC-20 treats cartridge programs located at $A000 in a special
way. On power-up, a test is made for the existence of the $A000
cartridge program, and if one exists, an indirect jump is made to the
address specified at location $A000. This jump is made after the stack
pointer is initialized, but before anything else is done. Because kernal
initialization has not occurred, any cartridge program using kernal
1/O routines must do kernal initialization before using those routines.
VIC Micromon as presented here has the kernal initialization
calls built in so that it can easily be relocated and used as a cartridge
program at $A000. Besides making the changes to relocate it to $A000,
the only additional changes are to the first four bytes of VIC
Micromon.

Location Contents
A000 09
A001 A0
A002 C7
A003 FE

302

Appendix F

Power-up with VIC Micromon installed as a cartridge at $A000 will
result in immediate entry into VIC Micromon. Because BASIC is not
initialized when the E or X command is used after power-up, the exit
to BASIC will be via an indirect jump to the address given in location
$C000, which is the entry to initialization of BASIC. Once in BASIC,
subsequent access of VIC Micromon at $A000 must be made to
location $A012, which is done via a SYS40978.

There is one last point, or rather one last byte, in VIC Micromon
which is not used for anything other than to make the 4K byte
checksum of VIC Micromon come out to a rounded up page value.
For example, the VIC Micromon from $4000 to $4FFF has a data byte
value of $E6 at location $4FFF that results in a checksum of $BF00.
This provides an easy way to verify the integrity of VIC Micromon
without having to memorize orlook up a checksum.

Three Notes On VIC Micromon

Using the VIC Micromon tape commands L, S, and V on a VIC-20
with 3K of RAM installed at $400 to $FFF will result in overwrite of
$400 to $438 with file header characters (blanks). This is due to the
tape buffer being relocated to $375 while in VIC Micromon from the
normal $33C. The normal VIC cassette commands will work properly
and not overwrite this area when you EXIT from VIC Micromon. This
is because VIC Micromon restores the tape buffer pointer value to
$33C when an EXIT is done. This problem does not occur if the 3K
RAM at $400 to $FFF is not installed.

If the I (Initialize memory and screen pointers) command was
used in VIC Micromon and you EXIT, then the RUN/STOP plus
RESTORE should be used in addition to the NEW command to clean
up the BASIC environment.

Any binary image saved on cassette tape with the VIC
Micromon *’S”” command can be loaded in the normal VIC-20 BASIC
environment by using the command: LOAD’""’,1,1 which looks for
the next program on tape and LOADs it into the same part of memory
that it came from (see page 9 of VIC-20 Programmer’s Reference Guide).

Checksum

There’s a good amount of typing to do to enter the VIC Micromon
program. Use the following BASIC program (after you’ve SAVEd a
copy of your efforts) to locate any errors you might have made.

Program |. Micromon Checksum.

1 IFPEEK(20478)=67ANDPEEK(2@479)=73THENRUN1@

2 PRINT"VIC20 MICROMON LOAD &":PRINT"VERIFIC
ATION PROGRAM.":PRINT

303

Appendix F

3 PRINT:PRINT:PRINT"AT LEAST 4K BYTES OF":PR
INT"RAM MUST BE INSTALLED"

4 PRINT"AT 16384 ($40090) ELSE":PRINT"LOAD WI
LL FAIL.":PRINT

5 PRINT"IF LOADED & VERIFIED":PRINT"OK, MICR
OMON WILL BE" :PRINT"ENTERED AUTOMATIC
ALLY."

6 LOAD"“plpl

19 DATA 13328,16867,15061,13732,14507,13829,1
3267,12747,16288,13920

20 DATA 14355,11977,11877,13583,11338,15173,1
2337,14852,14051,15713

390 DATA 13442,15242,14746,15059,13134,15848,1
5858,17856,13327,8601

43 DATA 12171,10074

100 Q0=16384

11¢ FOR BLOCK=1T032

12¢0 FOR BYTE=@T0l127

130 X=PEEK (Q+BYTE) : CK=CK+X

140 NEXT BYTE

150 READ SUM

168 IF SUM <> CK THEN PRINT"ERROR IN BLOCK #"B
LOCK:ERR=1:GOT0O17@

165 PRINT"BLOCK #"BLOCK" OK"

170 CK=0:0=0+128 :

180 NEXT BLOCK

199 IFERR=1THENPRINT"LOAD FAILED":END

200 SYS16384

Program 2. VIC Micromon.

4000 78 4C 15 40 41 39 C3 C2
4008 CD 20 8D FD 20 52 FD 20
4019 18 E5 20 F9 FD A9 DF A2
4018 45 8D 16 83 8E 17 83 AD
4020 14 83 AE 15 #3 C9 91 D@
4028 04 E@ 43 FP 29 8D 60 03
4630 8E 61 @3 20 94 48 A9 75
4038 85 B2 A9 88 8D 8A @2 85
46408 9D A2 D6 28 5D 4E 8E 48
4648 83 BE 64 #3 58 @88 CE 3D
4050 83 D@ @3 CE 3C 83 20 AE

304

Appendix F

4058
4060
4068
4079
4878

4080
4088
4090
4098
40AP0
40A8
40B0
40B8
40C0
40C8
40D0
4908
40ED
40E8
40F0
40F8

4100
4108
4110
4118
4120
4128
4130
4138
4140
4148
4150
4158
4160
4168
4170
4178

45
A9
A9
A9
4E

A2
F@
DD
8A
BD
CA
D@
B4
FC
83
49
FA
9D
54
A5
53

83
8D
45
18
41
1F
E8
65
FE
E7
B2
EB
F@
20
FF
Al

A2
3F
@F
2E
83

7F
F9
90
oA
B6

B2
FC
D6
20
CA
48
53
g3
FD
g3

60
57
20
20
E6
49
20
FD
29
40
40
A2

F8
Fo@
49

42
20
8D
20
8D

9A
C9
4F
AA
4F
E5
A2
D@
FB
13
D@
BD
83
AC
A4
98

A9
83
Fo
E7
FD
AC
E7
85
D5
B@
AC
20

47
2A
F@

A9
D2
QE
D2
56

20
20
D@
BD
85
4C
a8
23
60
42
FA
53
CA
55
FE
E5

00
20
40
40
D@
56
40
FD
40
51
56
Al
FD
20
60
1E

2A
FF
90
FF
23

8C
Fo
13
B5
FC
60
B4
EE
A9
A2
60
83
D@
23
38
FC

Fo
CB
20
90
@2
23
18
98
20
20
g3
FB
Cl
38
20
AE

AC
A9
20
A9
8D

48
F5
8D
4F
6C
490
FB
56
00
29
A2
95
Fl
4C
ES5
A8

@2
47
21
7F
E6
D@
AD
65
59
AE
DY
AC
FD
49
E6
56

3D
oY}
AE
00
64

Cc9
A2
49
85
FB
A2
D@
23
8D
20
@2
FA
60
F4
FB
2D

A9
20
48
20
FE
6E
53
FE
41
49
46
57
Fo
20

@3

49
2C
45
8D
@3

2E
24
23
FB
2}
82
29
D6
4E
38
BS
68
AD
40
8D
53

g1
AE
99
59
20
Fo
@3
85
20
20
Fp
g3
2B
El
20
D@

305

Appendix F

4189
4188
4190
4198
41A0
41A8
41B9
41B8
41Co
41C8
41D@
41D8
41E0
41E8
41F0
41F8

4200
4208
4210
4218
4220
4228
4230
4238

42490
4248

4250
4258
4260
4268
4270
4278

4280
4288
4299
4298
42A0
42A8
42B0

1
iv

54
AD
D@
20
D@
ES8
D@
5F
20
90
@3
Bl
E8
41
E3

@D
42
45
47
20
26
Fo
FB

Fl
4E

g3
20
98
20
4D
FC

88
4A
Fo
BD
4A
1)
29

~n
A

48
4B
F3
74
12
20
F3
48
A4
c8
20
FB
EC
20
20

AQ
20
D@
20
CF
EQ
@r
B@
QE
20

20
7B
20
FF
23
60

65
90
13
98
29
AA
23

Fo
8D
23
AC
41
20
A4
Fo
90
49
E@
AE
DD
4n
1F
2B

2C
El
8A
38
42
@3
AD
1D

58
99

99
42
65
47
20
38

FB
@B
29
4E
aF
BD
8D

49
4B
81

20
8C
49
1A
D6
F@
20
45
65
83
49
44

20
FF
20
49
68
D@
58
20
23
45
45
AR
42
AE
7A
A4

9¢
4A
@7
BO
D@
DC
4D

90
83
FB
40
8C
48
F@
8E
9D
29
D@
A2
@3
1%}
20
20

C4
D@
2D
20
20
14
83
65

90
BD

CA
E8
8A
4A
42
FC

g1
BO
29
24
04
4E
23

17
20
20

48
9D
20
59
65
20
EE
2}
D@
F2
7C
Fa

40
EE
49
Cc9
E6
AC
(03°
42

QE
EF

D@
D@
8E
g3
85
AR

cs8
17
80
4A
AQ
8D
98

6¢
7C
1F

Cc9
65
EQ
83
23
57
8E
AD
@A
20
41
40

20
20
20
4D
42
4D
E8
88
BD
4E
D2
g1
4A
60
FB
10

60
co
4A
4A
80
58
29

20
41
49
40
27
@3
20
20
E8
48
4A
2o
Cc8
68
BO
90

6F
B6
F8
48
A2
g3
Bl
D@

E9
Fo

60

23
AD
84
21

A8
22
AA
4A
A9
g3
8F

Appendix F

42B8
42Co
42C8
42D0
42D8
42E0
42E8
42F0
42F8

4300
4308
4310
4318
4320
4328
4330
4338
4340
4348
4350
4358
4360
4368
4370
4378

4380
4388
4390
4398
43A0
43A8
43B0
43B8
43C0
43C8
43D0
43D8
43E0
43ES8

AA
4A
D@
FB
49
@3
F6
8D
55

F6
EA
83
45
91
91
AS
11
20
20
43
Al
8D
A9
3a
8D

04
23
B7
48
g3
D@
20
20
20
20
QE
A9
AB
A9

98
90
FA
20
cC
co
4E
55
@3

69
AC
20
1%

A5
FF
91
54
6E
AD
FB
19
20
43
11

10
20
A9
48
48
F8
2B
Fo
El
AE
48
o8
43
12

AQ
28
c8
65
4D
g3
8D
23
2E

3F
38
9E

23
4A
88
42
@3
90
54
A9
54

20
49
43

23 29

3A
FB
A
AQ
48
41
49
8D
91
2C
58
91

43
Ap
14
1cC
85
20
23
10
A9
1D
8E
AD

81
41
48
6C
8C
49
AE
90
D@
A2
38
EA

38

D2

EQ@
4A
D@
A2
cs
Fl
83
2}
@3

D2
20
AD
A9
A9
18
8D
8C
FF
7C
@A
91
3C
91
12

FB
20
A9
60
48
FF
56
08
EE
2E
49
48
49
FF

8A
29
F2
g1
90

B9
AQ
2A

FF
E6
2C
3c
FF
20
19
11
20
41
08

8D
F@

91

Cl
1F
77
g3
28
AC
g3
20
4C
A9
20
A9
20
AQ

Fo
20
60
20
Fo
A8
36
@5

Ca
47
AC
8D
8D
34
91
91
AE
20
90
A9
1}
FB
A9

FB
49
48
8D
20
72
D@
cs8
AE
3A
F8
28
38
@8

2B
88
Bl
CE
A2
B9
4F
QE
D@

D@
a9
3cC
13

43
8C
60
45
1cC
17
c4
91
20
gc
B@

Fo
D@
g8
4B
49
42
@D
43
42
20

20
49
A2

307

Appendix F

308

43Fd
43F8

44080
4408
4410
4418
4420
4428
4430
4438
4440
4448
4450
4458
4460
4468
4470
4478

4480
4488
44990
4498
44n0
44 A8
44B90
44B8
44Co
44Cs8
44D0
44D8
44E0Q
44E8
44F0
44F8

4500
4508
4510

1]
32

85
EA
D@
A9
20
4C
86
EB
85
83
9D
CA
3F
65
@2
F@

45
84
23
8E
A2
20
23
BD
EP
ar
BO
0E
20
20
20
23

48
83
90

Al FB 29
A9 2E 20

D4
EA
DF
@8
c8
48
FE
47
FD
20
AF
30
Ap
83
20
1E

B@
FC
ES8
54
@0
87
AA
Fé6
@3
AD
1E
58
70
70
6D
CD

AC
Cc9
21

EA EA
EA EA

4C
20
43
45
20
4C
86
8C
83
14
B5
88
A4
Cc9

@F
85
9D
g3
8E
42
BD
4E
D@
58
20
23
45
45
45
4B

4D
9D
88

DF
9E
A9
20
A4
AE
FE
48
E8
BD
4A
D@
49
20

20
FB
65
A2
4B
AE
36
20
14
@3
6D
90
BD
CA
20
23

83
D@
c8

7F
D2

EA

4A
43
3A
E6
49
45
A2
Cc9
ED
4F
6E
F6
Fa
Fa

6C
A9
83
("))
g3
58
4F
70
AC
c9
45
GE
EF
D@
6D
D@

F@
20
D@

Cco
FF

EA
1F
20
20
8D
47
Fg
20
00
20
g3
B3
66
Fo
22
F3

48
30
E8
8E
AD
23
29
45
4D
E8
88
BD
4E
D2
45
7F

2F
20
6F

20
A9

EA
49
E6
B6
77
85
23
31
8E
F@
D@
38
a3
E9
c9
20

A4
9D
D@
56
56
8E
708
A2
23
A9
D@
E9
Fo
Fo
AD
20

AD
Fo
98

BO
1%

EA
88
47
45
g2
FD
20
48
66
F4
Fl
E9
6E
A2
3A
90

FB
65
D9
83
@3
55
45
86
F@
30
Fl
4E
83
6
54
21

55
40
2A

Appendix F

4518
4520
4528
4530
4538
4549
4548
4550
4558
4560
4568
4570
4578

4580
4588
4590
4598
45A0
45A8
45B0
45B8
45C0
45C8
45D0
45D8
45E0
45E8
45F0
45F8

4600
4608
4610
4618
4620
4628
4630
4638
4640

AE
B@
AC
91
91
B6
A9
A5
8D
8E
85

8E
g3

F@
E8
Cc9
60
4A
68
20
4C
29
8C
3D
A9
Cco
91
g3
83

@3
8D
@3
@3
2C
CD
CD
D@
80

53

4D
FB
FB
45
20
FC
7A
7B
Cé6

4A
Fo

g3
8E
30
CD
4A
29
D2
D2
EF
41
g3
80
8D
20
68
68

68
44
BA
29
48
5B
5A
5B
8D

g3
38
83
88
A
20
8D
20
82

4C

@3
@D

4AC
4B
90
4E
4A
gF
FF
FF
8D
g3
68
8D
2E
94
8D
8D

8D
23
8E
1@
83
23
@3
AD
48

ED
Bg
DO
D@
41
C4
78
9F
AS
8D
68

AE
68

AQ
83
83
@23
4A
4C
A9
8D
3E
68
69
48
91
48
40
3E

3C
AD
42
Fo
50
D@
D@
5F
83

82
60
g3
F8
8C
40
@2
45
FB
7C
49

4B
68

44
AE
Cc9
D@
20
17
BA
3F
03
18
0o
83
A9
D8
83
83

83
15
@3
@3
1F
6B
63
g3
38

A8
ca
B9
AD
77
28
8D
8E
20
B2
20

23
EE

4C
4A
47
1A
17
48
2C
23
8E
69
8D
D@
3F
68
68
68

AD
83
58
4C
AD
AD
AD
D@
12

D@
CA
FC
56
@2
6F
7D
79
9F
A9
70

DD
56

60
23
60
60
48
A9
A9
08
490
g1
3C
26
8D
8D
8D
8D

14
8D
AD
4E
3cC
3D
5E
53
4E

83
8A
00
g3
20
42
82
82
45
@7
45

65
83

40
60
38
48
AA
@D
91
68
23
8D
83
A9
2E
41
3F
3D

@3

3E
40
g3
83
23
A9
48

309

Appendix F

310

4648
4650
4658
4660
4668
4670
4678

4680
4688
4690
4698
46A0
46A8
46B0
46B8
46C0O
46C8
46D0
46D8
46EQ
46E8
46F0
46F8

4700
4708
4710
4718
4720
4728
4730
4738
4740
4748
4750
4758
4760
4768
4770
4778

g3
45
20
g3
@3
20
20

Cc9
4A
D@
AD
53
AD
@3
A9
Fo
48
4B
1F
5F
8D
A2
AE

98
48
AE
AB
AE
38
16

83
D@
47
21
4C
5C
8E
80
BF
20
29
78
8D
44
09
42

43
48
48
41
48
09
42
4C
g3
AF
8D
49
D@
AE
940
FB

D2
A9
45
09
3C
49
42

D@
4E
CE
91
5B
@3
5F
8D
Cc9
E3
AE
A9
2E
g3
8D
g3

AE
BA
20
20
g3
A9
20

23
A9
5F
Cc9
49
AE
K]
48
20
48
45
A
91
8E
28
9A

20
3D
3F
48
5A
5C
8D
49
63
8E
83
A
EE
@3
AC
87

42

14
F2
85
24
E4

4C
01
03
FE
A9
5D
A9
83
D@
20
AD
8D
A9
43
91
78

98
g3
83
4C
03
g3
5C
20
23
50
8E
20

4E

D@
4E
42

83
4C
49
48
FB
8D
FF

68
8D
CE
D@
o8

40
20
56
A4
48
2E
DF
83
8E
AD

48

48
AE
60
8E
8D
23
CB
20
23
52
CF
83
18
83
AA

9A
26
8D
AD
86
4E
F@

40

5E
3Aa
F@
8D
D@
A4
20
49
g3
91
A2
A9
29
44

AD
AD

40
5B
5D
8E
47
42
20
B3
FF
20
20
D#
BD

A9
47
4B
3D
FC
@3
FB

Cc9
83
83
A2
12
5E
g2
49
45
D@
Fo
A9
45
49
91
83

3C
3E

20
@3
B3
5D
8D
48
42
20
Cc9
21
E7
1A
F6

Appendix F

4780
4788
4799
4798
4770
47A8
47B9
47B8
47C9
47C8
47D0
47D8
47E9Q
47E8
47F0
47F8

48090
4808
4819
4818
4820
4828
48 30
4838
4840
4848
4850
4858
4860
4868
4879
4878

4889
4888
4899
4898
48A0
48A8
48B9

AE
49
Fo
FB
ED
g3
FB
g3
23
FA
86
8E

48
20
AS

4A
68
29
69
60
95
60
48
BO
90
60
1)
20
D@
oA
48

60
02
FA
8D
A4
FB
23

D@
AC
23
AA
50
Fl
99
91
91
30
FE
55
85
B@
42
FC

4A
29
D2
F6
A2
FA
A9
C9
g8
87
4C
8D
D@
oF
oA
20

C9
69
4C
14
49
25
Do

06
4D
8C
ED
03
FB
19
FB
FB
9E
20
23
FB
F6
48
20

4A
gF
FF
90
02
68
00
20
29
AA
60

89
18
oA

3A
28
65
03
Fo
FC
9E

20
23
4D
4F
99
c8
88
c8
20
20
42
20
86
20
85
FF

4A
20
68

BS
95
8D
Fo
8C
20
49
23
20
60
8D

08
60
49
8E
37
Fo
AS

C4
Cco
23
03
1E
AD
18
Bl
1F
31
48
8C
FC
45
FD
47

29
17
4C
69
FA
FC
59
F9
48
57
20
20
8C
20
59
@D

29
20
A9
15
20
22
FB

40
g2
88
c8
88
52
8A
FB
49
48
8D
48
60
48
86
AS

17
48
D2

48
CA
23
20
20
48
74
8C
48
81
03

oF
A4
91
03
E6
A5
8D

4C
D@
38
Bl
AD
23
6D
6D
88
85
54
20
20
B@
FE
FB

48
48
FF
69
B5
DO

20

6C
57
99

48
C9
48
20

28
49
A2

47
9A
93

68
33
Bl
FB
51
Fl
62
63
19
FD
23
45
31
g3
60
48

99
D@
43
20
A5
c9
g2

311

Appendix F

312

48B8
48CP
48C8
48D0
48D8
48E9Q
48E8
48F0
48F8

4900
4908
4910
4918
4920
4928
4939
4938
4940
4948
49590
4958
4960
4968
4979
4978

4989
4988
4990
4998
4970
49A8
49B9
49B8
49C9
49C8
49D0
49D8
49E0

A5
A8
02
g2
4C
DC
03

1F

20
FB
CE
A9
FB
23
AE
A9
A2
E8
2D
AD
49
44

49

42
29
48
20
96
gD
A2
29
D@
EB
22
Fo
51

FC
20
20
20
68
Do
60
49
49

57
Cl
4B
B3
D@
EE
45
20
09
E@

3D
AD
23
EA
20

48
14
20
CF
29
60
65
E6
08
47
D@
gB
°1]

8D
BA
Cc9
C3
49
F1
8D
Bl
CE

48
FB
83
85
29
56
68
4cC
BD
1cC
AD
03
43

48
31

8D
49
1Y)
FF
F@
AQ
AQ
47
20
20
A3
91
%

94
FF
FF
FF
A5
8D
4B
FB
4B

99
D@
60
FC
E6
03
A2
D2
76
D@
3C
20
03
FF
4C
48

44
8D
49
c9
47
g1
83
AD
A4
98

BB
BY

02
20
4C
A9
9A
3D
03
20
03

28
69
A9
A9
FF
60
2E
FF
4F
F5
83
FF
20

68
20

g3
4B
D@
20
20
84
20
49
49
49
CF
E6
91

A9
Cco
75
g3
C9
23
AQ
FF
D@

A2
20
3E
@5
E6
98
20
20
20
AQ
20
47
FF
20
490
E3

8E
@3
F8
Fo
CF
BA
BD
23
Fo
FO
FF
B7
20

g2
FF
40
85
g3
8E
g0
47
Fo

00
1F
85
69
FC
48
BE
QPE
D2
3B
FF
20
47
14

48

43
29
F@
F9
FF
A9
FF
Cc9
AF
29
Cc9o
c8
A4

AA
A2
A9
9A
Fo
3C
20
20
60

81
49.
FB
E6
D@
20
48
48
FF
20
47
38
AD
49

20

23
8C
DB
DY
Cc9
20
A8
53
20
c9
22
co
49

Appendix F

49E8 F0@ QE 20 57 48 29 1F FO
49F@ 85 85 BA 20 98 49 D@ D9
49¥8 A9 @2 85 B9 AD 49 @3 C9

4700 53 DO 6C A9 FB A6 FD A4
4A@08 FE 20 D8 FF 4C 68 40 49
4A10 4C FO 02 A9 @1 A6 FB A4
4A18 FC 20 D5 FF A5 90 29 10
4A20 F@ EA A9 69 AQ C3 20 1lE
4728 CB 4C 60 40 20 E6 47 20
4A30 A5 40 4C 68 40 20 E6 47
4A38 20 1F 49 20 1F 49 20 F9
4740 47 20 38 49 20 FO 40 90
4A48 OA 98 D@ 15 AD 53 63 30
4A50 19 10 98 C8 D@ ¥B AD 53
4A58 @3 19 06 20 FF 47 4C 68
4A60 40 4AC 60 40 20 E6 47 20
4A68 7A 4A 4C 68 49 20 AE 45
4A70 A2 2E A9 24 20 OE 48 20
4A78 F8 47 20 EA 4A 20 A0 4A

4780 20 38 49 20 86 4A 20 89
4A88 4A 20 38 49 A2 94 A9 30
4A90 18 PE 54 @3 2E 55 #3 69
4798 09 20 D2 FF CA DO EF 690
4AAQ0 A5 FC A6 FB 8D 55 @3 8E
4AA8 54 03 20 38 49 A5 FC 20
4AB9 B4 4A A5 FB AA 20 38 49
4AB8 8A 29 7F C9 20 @28 BO OA
4AC9 A9 12 20 D2 FF 8A 18 69
4AC8 40 AA 8A 20 D2 FF A9 00
4ADO 85 D4 EA EA EA EA EA EA

4AD8 EA EA EA EA 28 B@ CO A9
4AEQ 92 2C A9 14 2C A9 22 4C

4AE8 D2 FF 20 38 49 A6 FB AS
4AF9 FC 4C CD DD 20 05 4B B#
4AF8 41 20 38 49 20 F8 47 20

4B@8 7D 4A 4C 68 40 A2 94 A9
4B@8 99 85 FC 28 C2 4B 20 2B

313

Appendix F

314

4B19
4B18
4B20
4B28
4B39
4B38
4B49
4B48
4B50
4B58
4B60
4B68
4B70
4B78

4B80
4B88
4B9¢
4B98
4BAD
4BAS8
4BBO
4BBS8
4BCO
4BCS8
4BDO
4BD8
4BE®
4BES
4BF0
4BF8

4C0O0
4C08
4C19
4C18
4C20
4C28
4C30
4C38
4C40

48
4B
28
20
3A
18
FC
FC
85
FB
FB
20
29
FF

6o
86
20
4A
@F
C2
29
F7
FC
F9
A6
FD
ES
F@
18
FC

20
AD
20
2C
40
85
Cc9
E7
AQ

85
ca
60
Fo
B9
60
48
26
FB
26
A9
c2

47

20
4A
38
20
A9
4B
22
4C
69
60
FB
A4
20
47
A5
65

E7
53
F8
A9
78
B2
E6
4B
0o

FB
D@
20
@B
87
4C
A5
FB
68
FC
"]’
4B
49
20

Fl
4C
49
AQ
00
20
4B
38
20
20
A4
FE
A4
4C
FB
FE

4B
g3
47
"}’
29
AE
Fo
20
8C

20
F7
A4
Cc9
29
60
FB
26
65
A5
65
8D
20
38

4A
68
29
4A
85
2B
20
49
8C
54
FC
20
E3
DB
65
85

20
85
4C
8D
52
42
95
21
54

22
28

30
gF
40
48
FC
FC
FE
FC
55
38
49

20
40
F8
4C
FB
4B
BC
4A
48
48
20
7B
4C
47
FD
FC

Fo
FB
68
B
FD
23
6C
48
g3

4B
20
Fo@
90
60
85

26

68
85
65
85
03
49
68

38
29
47
68
85
20
4B
26
C9
8D
8A
FE
68
20
85
4C

49
20
49
90
58
9A
09
20
8C

20
38
oF
@B
68
FE
FB
65
FC
FB
FC
48
68
AA

49
9F
20
49
FC
BC
ca
FB
20
88
FE
20
40
E7
FB
@D

84
38
A9
4C
A9
A5
Co
38

3D
49
Cc9
Cc9
68
A5
26
FB

85
640
48
29
A9

29
4B
EA
A2
20
4B
D@
26
Fod
g2
Ab
18
20
4B
AS
4C

FC
49
Fo
65
3C
73
29
49
g3

Appendix F

4C48
4C59
4C58
4C60
4C68
4C70
4C78

4C89
4C88
4C90
4C98
4CAQ
4CA8
4CB#
4CB8
4CC¥9
4CC8
4CDO
4CD8
4CE®
4CES8
4CF0o
4CF8

4D00
4D0O8
4D10
4D18
4D20
4D28
4D30
4D38
4D49
4D48
4D59
4D58
4D69
4D68
4D79
4D78

20
D@
8D
55

03
64

4C
Do
AS
A9
51
Fo
03
85
8D
AD
A5
E6
Cc9
6F
2C
4C

49
91
D1
17
4E
16
Fo
FD
49
56
26
D@
FB
A9
79
20

Fo
16
54
@3
55
20
03

56
7D
Dl

4E
16
Fo
FD
49
49
FB
FC
24
42
20
gE

20
D@
85
8D
c9
c9
15
949
g3
FF
co9
4D
B@
00
40
79

40
18
03
20
03
FF
Do

FF
A5
85
8D
co9
Cc9
CD
B@
23
@3
69
20
Fo
A9
13
42

6D
Fo
FD
5E
3A
24

El
29
AD
24
38
g2
85
20
4A

90
Bl
98
1F
20
47
04

AD
D6
FD
5E
3A
24
38
El
20
c9
28
c8
1A
g0
42
4c

4A
A5
A5
23
F@
Fo@
AS
E6
oA
49
Fo
A5
Cé6
C6
D@
4C

1B
FB
6D
49
FF
4C
A5

77
c9
AS
g3
Fo
Fo
A5
Ccé
oA
3A
85
43
20
8D
A9
56

4C
D6
D2
AQ
1A
12
FD
FE
4E
23
1D
FB
FC
29
4D
68

AC
6D
55
4C
47
68
Cé

B2
16
D2
AP
1A
12
FD
FE
4E
D@
FB
4C
c9
4E
o9
FF

F4
D@
85
g1
Cc9
CE
69
D@
90
Cc9
Do
E9
20
g5
20
4D

56
54
03
48
AD
49
D@

C9
D@
85
g1
c9
CE
E9
D@
B@
11
90
F4
4D
g3
85
20

4C
EC
FE
29
2C
5E
16
DD
@3
3A

08
CB
4E
B2
29

23
g3
8D
4C
54
AD
g3

11
Fo
FE
20
2C
5E
16
DD
B8
18
a2
4c
20
AQ
C6
1F

c9
A5
A9
51
F@
03
85
8D
4C
F@
20

43
4cC
49
D@

315

Appendix F

316

4D89
4D88
4D94
4098
4DAQ
4DAS
4DB0
4DB8
4DCO
4DCS8
4DDO
4DD8
4DE@
4DES
4DF9Q
4DF8

4EQ0
4EQ8
4E10
4E18
4E20
4E28
4E30
4E38
4E490
4E48
4E50
4E58
4E60
4E68
4E79
4E78

4E80
4E88
4E90
4E98
4EAQ
4EAS8
4EBQ

4D
FE
FD
E9
6F
F3
23
g0
20
4D
A6
86
A9
Bl
AD
A6

91
D2
20
29
FB
85
A4
18
A
51
60
BB
20
"1’
49
52

2E
4C
20
49
30
49
49

A5
A9
ED
09
42
CE
AD
Al
33
A2
D2
AD
2C
AC
C6
D2

FD
FF
51
3A

cc
D3
60
A
4E
Bl
32
D2
g0
43
4F

32
20
4A
g2
22
g2
B2

FB
19
5E
85
20
5E
4D
FB
49
20
20
86
85
91
FE
86

88
co
4E
4E
FC
A5
91
20
A
20
FD
29
FF
00
32
4D

20

A6
8D
g3
FC
Fo
23
g3
8E
29
Al
D7
FE
FD
FD
ca
FE

19
16
C9
AA
A9
CF
D1
51
0A
81
c8
490
E8
%))
30
4F

20

5945
41 4E

45
45
45
45

23
33
33
B3

FC
5E
85
29

DA
29
4E
16
FB
4D
A2
A
98

84

FB
D@
20
28
FF
Fo
A9

8D
48
29
60
D@
09
20
4E

20
45
20
Do
D@
D8

De

85
@3
FB
c9
Fo
EQ
AB
g3
42
4cC
A6
X'
CE
D@
F1
FD

A9
g2
Fo
3A
8D
gA
X'
29
59
gD
7F
BD
F7
X'
4D
29

42
20
20
g8
g8
28
28

FD
38
A5
4D

EE
43
A9
4C
87
F4
86
ES8
F8
A9
AQ

13
38
F3
4E
64
A5
85
81
23
59
C9
98
60
@D
49
56

49
32
38

40
49
40

86
A5
FE
29
B9
4D
A2
2C
68
42
E8
AC
88
Cé6
20
2B

4C
60
88
85
g3
CE
CF
48
20
83
20
4D
09
56
43
31

4cC
32
33

29
29
29

Appendix F

4EB8
4ECH
4ECS8
4ED@
4ED8
4EE0Q
4EES8
4EF0Q
4EFS8

4F09
4F98
4F19
4F18
4F20
4F28
4F30
4F38
4F40
4F48
4F590
4F58
4F69
4F68
4F79
4F78

4F80
4F88
4F90
4F98
4FAD
4FA8
4FB9
4FB8
4FC9

1D
19
1B
5B
A8
6D
34
5A
C8
98
cc
A2
B2
26
26
29

52
43
53
48
57
28
56
48
41

23
AE
23
5B
AD
9C
11
48
54
84
4A
A2
32
26
48
209

51
20
50
4C
58
2D
29
3D
87

44
44
44
44
78
59
2C
58
5D

9D
69
24
A5
29
A5
A5
26
68
74
72
74
B2
72
44
29

29
58
41
4D
2C
4F
3D
44
41

33
33
33
33
A9
4D
29
24
8B

8B
A8
53
69
09
69
69
62
44
B4
F2
74
09
72
44
50

29
52
42
4E
3A
49
5C
1F
A4

D@
D@
D@
D@
oo
91
2C
24
1B

1D
19
19
24
7C
29
23
94
E8
28
A4
74
22
88
A2
43

53

43
51
38
4A
FF
47
46

8¢C
8cC
g8
08
21
92
23
X
Al

Al
23
Al
24
09
53
AQ
88
94
6E
8A
72
09
C8
C8
29

52
59
44
52
24
25
AA
82
AP

09

ge
AE
15
84
D8
54
/8"
74
00
44
1A
C4
@D
20

20
52
46
28
23
26
49
41
41

Y]
9A
29
29
82
4A
24
8A
8A

29
53
1A
AE
9C
13
62
44
B4
F4
AA
68
1A
CA
20
49

41
20
47
54
22
45
9F
F9
AA

317

Appendix F

318

4FC8
4FDP
4FD8
4FE®
4FES8
4FF0

4FF8

49
49
4C
4A
4C
4B

4C

BO
16
gc
F4
35
37

49

43 3C
4C 06
43 15
4A 68
4A CA
4C 21
43 40

47
41
44
4B
4B
4cC
43

A8
B8
79
ED
2C
AA
40

46
46
49
4B
4A
49
43

49
2A
64
09
8D
19
49’

Appendix F

Supermoné4

Supermon64 is your gateway to machine language programming on
the Commodore 64. Supermon, in several versions, has been popular
over the years as a major programming tool for Commodore users.
Supermoné4 itself is in machine language, but you can type it in
without knowing what it means. Using the Tiny PEEKer/POKEr
(Program 1), or via the built-in monitor of a PET, type it in and SAVE
it. The fastest way to check for errors is to type in Program 3 on a
regular PET. Then load Supermon64 into the PET. It will come in
above your BASIC. Then RUN the checksum and it will report the
location of any errors. Type POKE 8192,0 and hit RETURN. Then
type POKE 44,32 followed by NEW.

Enter the following;:

Program |. Tiny PEEKer/POKEr.

190 PRINT "TINY PEEKER/POKER"
110 X$="*":INPUT XS$:IF X$="*" THEN END
120 GOSUB 500

130 IF E GOTO 28@

140 A=V

1580 IF J>LEN(X$) GOTO 300

168 FOR I=@ TO 7

178 P=J:GOSUB 550

180 C(I)=v

199 IF E GOTO 280

200 NEXT I

219 T=0

220 FOR I=@ TO 7

230 POKE A+I,c(1)

240 T=T+C(I)

25@ NEXT I

260 PRINT "CHECKSUM=";T

278 GOTO 119

28¢ PRINT MIDS$(XS$,1,J);"?22":GOTO 110
300 T=0

318 FOR I=@ TO 7

320 V=PEEK(A+I)

330 T=T+V

340 v=v/16

350 PRINT " ";

360 FOR J=1 TO 2

370 V&=V

319

Appendix F

384
3940
480
410
420
430
440
500
514
5208
558
560
600
610
620
630
640
650
660
670
680
694
700
710
720
738
740
750
760
770
780
790
808

v=(V-Vg)*16

IF V$>9 THEN V$=V%+7
PRINT CHRS(V%+48);
NEXT J

NEXT I

PRINT "/";T

GOTO 110

pP=1

1=4

GOTO 600

P=J

L=2

E=0

V=0

FOR J=P TO LEN(X$)
X=ASC(MIDS$(X$,J))

IF X=32 THEN NEXT J
IF J>LEN(X$) GoTO 790
P=J

FOR J=P TO LEN(XS$)
X=ASC(MIDS$ (X$,JT))

IF X<>32 THEN NEXT J
IF J~P<>L GOTO 790
FOR K=P TO J-1
X=ASC(MID$ (X$,K))

IF X<58 THEN X=X-48
IF X>64 THEN X=X-55
IF X<@ Ok X>15 GOTO 790
V=V*16+X

NEXT K

RETURN

E=-1

RETURN

This program is a very tiny monitor. It will allow you to enter
information into memory, eight bytes at a time. To do this: wait for
the question mark, and then type in monitor-format the address and

contents:

20800 00 1A 08 64 00 99 22 93
The program will return a checksum value to you, which you
can use to insure that you have entered the information correctly. To
view memory, type in only the address: the contents will be

displayed.

320

Appendix F

Completing The Job
When you have finished entering all that data, you can make
Supermon64 happen quite easily. Three last POKE commands and a
CLR.

POKE 44,8

POKE 45, 235

POKE 46,17

CLR
You have Supermon64. Save it with a conventional BASIC SAVE
before you do anything else

Now you may RUN 1t — and learn how to use it.

Supermon64 Summary
Commodore Monitor Instructions:

G GORUN

L LOAD FROM TAPE OR DISK
M MEMORY DISPLAY

R REGISTER DISPLAY

S SAVE TO TAPE OR DISK

X EXITTO BASIC

Supermoné4 Additional Instructions:
A SIMPLE ASSEMBLER

D DISASSEMBLER

F FILL MEMORY

H HUNT MEMORY

P PRINTING DISASSEMBLER
T TRANSFER MEMORY

* Simple assembler

.A 2000 LDA #S$12
.A 2002 STA $8000,X
.A 2085 (RETURN)

In the above example the user started assembly at 2000 hex. The
first instruction was load a register with immediate 12 hex. In the
second line the user did not need to type the A and address. The
simple assembler prompts with the next address. To exit the
assembler type a return after the address prompt. Syntax is the same
as the disassembler output.

¢ Disassembler

.D 2000
(SCREEN CLEARS)
2000 A9 12 LDA #S$12

321

Appendix F

2002 9D @0 8@ STA $8009,X
2005 AA TAX
2006 AA TAX

(Full page of instructions)

Disassembles 22 instructions starting at 2000 hex. The three
bytes following the address may be modified. Use the CRSR keys to
move to and modify the bytes. Hit return and the bytes in memory
will be changed. Supermoné4 will then disassemble that page again.

* Printing disassembler
P 2000 ,2040

2000 A9 12 LDA #$12
2002 9D 00 80 STA $8000,X
2005 AA TAX

203F A2 00 LDX #5009

To engage printer, set up beforehand:
OPEN 4,4:CMD4
¢ Fill memory
.F 1000 1108 FF
Fills the memory from 1000 hex to 1100 hex with the byte FF hex.
* Gorun
.G

Go to the address in the PC register display and begin RUN
code. All the registers will be replaced with the displayed values.

.G 1000

Go to address 1000 hex and begin running code.
* Hunt memory
.H CBBJ DPPP 'READ

Hunt through memory from C000 hex to D000 hex for the ASCII
string read and print the address where it is found. A maximum of 32
characters may be used.

322

Appendix F

.H CO0Q% DY@G 20 D2 FF

Hunt through memory from C000 hex to D000 hex for the
sequence of bytes 20 D2 FF and print the address. A maximum of 32
bytes may be used.

e Load
L] L

Load any program from cassette #1.

.L "RAM TEST"
Load from cassette #1 the program named RAM TEST.

.L "RAM TEST",08
Load from disk (device 8) the program named RAM TEST. This
command leaves BASIC pointers unchanged.
* Memory display
-M 0000 0083

.+ 0003 00 Y1 @2 93 ¥4 05 96 07
.t 00838 U8 99 OA UB @OC UD OE OF

Display memory from 0000 hex to 0080 hex. The bytes following
the .: can be altered by typing over them, then typing a return.
* Register display
-.R

PC 1IRQ SR AC XR YR SP
0003 EG2E 01 @2 @3 ¢4 85

Displays the register values saved when Supermon64 was
entered. The values may be changed with the edit followed by a
return.

* Save
.S "PROGRAM NAME",01,0800,3C89

SAVE to cassette #1 memory from 0800 hex up to but not
including 0C80 hex and name it PROGRAM NAME.

323

Appendix F

.S "@0:PROGRAM NAME",08,1200,1F50

SAVE to disk drive #0 memory from 1200 hex up to but not
including 1F50 hex and name it PROGRAM NAME.

¢ Transfer memory
.T 1000 1100 50090

Transfer memory in the range 1000 hex to 1100 hex and start
storing it at address 5000 hex.

¢ Exit to BASIC

.X

Return to BASIC ready mode. The stack value SAVEd when
entered will be restored. Care should be taken that this value is the
same as when the monitor was entered. A CLR in BASIC will fix any
stack problems.

Program 2. Supermoné4.

] @800 00 1A 04 64 8@ 99 22 93

A @8@¢8 12 1D 1D 1D 1D 53 55 58 ~ s
810 45 52 20 36 34 2D 4D 4F . -
818 AE @0 31 @04 6E @@ 99 22 ¥
G820 11 20 20 20 20 20 20 28 1
P828 20 20 20 20 20 20 20 20 . ..
@830 00 4B 04 78 £@ 99 22 11 v .
@838 20 2FE 2E 4A 49 4D 20 42 ¢,
0840 55 54 54 45 52 46 49 45 1
@848 4C 44 0@ 66 84 82 B8 9E = .«
@858 28 C2 28 34 33 29 AA 32 .-

8858 35 36 AC C2 28 34 34 29 i1
0860 AA 31 32 37 29 00 00 08 .
@868 AA AA AA AA AA AA AA AA (.,

0870 AA AA AA AA AA AA AA AA
0878 AA AA AA AA AA AA AA AA

324

Appendix F

P88y
0888
2890
p898
g8AD
P8A8
p8B0O
P8BS
g8CH
pgcs
@8D0O
#8D8
ABED
P8ES8
08FD
P8F8

eog0e
p9e8
p91p0
0918
0920
2928
9930
P9 38
n949
p948
0950
958
960
P908
p970
@978

A5
A5
AP
C6
Do
Fo
Cé6
24
37
91
Cé6
2
85
20
20
8D

4]
8D
8D
8A
oo
@2
2A
34
02
@p
D2
@D
85
CS
A2
8a

2D
37
ge
22
@22
21
23
AA
D&
37
38
B6
33
4F
8D
17

00
3D
3B
E9
(5]
20
20
E6
E6
D@
FF
AS
20
2E
AE
oA

85
85
A5
Bl
Cc6
85
Cé6
A5
g2
8A
Co6
Co
A5
4F
16
B3

D8
B2
B2
p2
8D
57
57
Cl
26
F8
A9
2E
D2
Fo
DD
AA

22
24
22
22
23
26
22
26
Co6
48
37
4F
38
4F
03
A9

68
68
68
8D
39
FD
FA
Do
60
68
no
20
FF
F9
B7
BD

A5
A5
DO
D@
C6
A5
Bl
65
38
A5
68
D@
85
4F
AD
8¢

8D
8D
AA
3A
02
2o
(1]
06
20
68
20
57
20
C9
FF
Cc7

2E
38
02
3C
22
22
22
25
C6
37
91
ED
34
AD
E7
20

3E
3C
68
02
BA
A2
AS
E6
CF
AS
85
FA
3E
20
153
FF

85
85
Co6
A5
Bl
Do
18
48
37
DO
37
A5
6C
E6
FF
90

@2
B2
A8
98
8E
42
52
Cc2
FF
99
26
e
F8
Fo
D9
00

P e

23 /5%
25 Tge
23 o
22 4
22 27
B2 7.2
65
AS v
68 1/«
82 °'
18 w49
37 [
37 1
FF 2
@0, .-
FEF/ 227

68/ -2
68’ .¢
38/ ¢ .
E9 "
3F. —s/s1
A9 - i1

D@ - 570

DO~ 32
CO-ou

2@ -trin
A2-7.;
A9 - 76

P <y
F5-i4,v

BC ~iecas
48 ~ e sy

1

325

e~

Appendix F

326

2980
2988
2990
2998
BOAD
09A8
69B0
2988
p9Co
pocCs
p9D0@
9D8
P9ED
POES
P9F0@
p9F8

Ba00
BASS
BA10
gAa18
dAa20
aa28
BA30
@A38
@A4Q
QA48
BAS0
@r58
AAG0
PAGS
BATO
PAT 8

PA80
0A88
PASD

BD
EC
3A
A9
54
%))
Fl
A2
03
LY}
A9
48
4C
FF
20
AD

02
20
20
F8
20
20
FA
El
A5
90
20
Fo
FA
20
FA
20

D@
FF
Dl

Cé6
4C
g2
]
FD
20
60
")
4C
Cé
B2
20

A2
D2
38

20
48
8D
Ba
69
79
41’
FF
C3
2E
4]
EQ
00
B7
oo
3E

F8
C9
20

FF
ED
A5
85
25
33
20
oo
ED
1D
85
57
FA
0o
FF
20

48
FA
F8
20
FA
FA
A9
Fo
C5
AQ
FA
4C
90
F8
90
F8

4C
8D
79

00
FA
C2
1D
Bl
F8
88
81
FA
60
C2
FD
0o
00
E8
ce

FA
0]
154]
79
4]
00
90
3C
Cl
3A
153
ED
03
151
EB
0o

47
FO
FA

48
00
8D
Ad
Cl
oo
FA
Cl
0o
A9
A9
22
A9
BD
EO
F8

2o
20
Fo
FA
29
90
20
A6
A5
20
20
FA
20
D@
A9
20

F8
ac
o

60
A5
39
oo
20
Cé
00
Cl
20
3B
05
68
90
EA
16
00

AD
B7
5C
o
3E
28
D2
26
C4
Cc2
8B
e
80
87
n8
Al

4
C9
90

Ca
Cl
02
0o
48
1D
90
Cl
33
85
60
A2
20
FF
Do
AD

3A
F8
20
99
F8
20
FF
DO
E5
F8
F8
20
F8
20
85
F3

20
20
@3

18- » g
8D-129%
60 -1

FA - ..
DB ~ 1
@B-a0

F@- uis

F8- sq4
Cl-=1:
98- 7.

2E- 1 .

D2- .5
o~

F5-uay
39

-
-k

D2~ .1
9o~ %y
3E - wwy
33 e
PO 1o
69 11y

38~ Vit g

79 v
00~ b
79 =74
1D~ e
a0 " 4

P
&
f

CF ~ ‘a2
DO - vt
20 o

Appendix F

PASS8
@AAQ
PAA8
BABO
PAB8
BACO
PACS
PADO
PADS
PAED
PAES8
@AFD
PAFS

pBEB
PBO8
PBlO
#B18
eB20
@B28
@B30
pB38
PB40
pB4S8
PB59
AB58
pB60D
PB68
@B70
@B78

pB8Y
PB88
0B90
2B98
PBAD
PBAS

80
AE
48
48
3E
AE
21
84
A9
20
22
Fo
E6

ED
F@
Fa
Fo
8D
20
20
F9
4C
c9
20
2C
Cl
69
D@
F2

C2
4a
AA
48
FF
26

F8
3F
AD
AD
B2
3F
84
90
B2
Fo
D@
10
B7

FA
16
(5]
E5
60
96
D2
154]
47
2C
69
D@
85
FA
98
F9

20
4n
68
8A
29
60

no
B2
3a
3C
49
02
BA
84
85
F9
14
C9
cs

0o
CS
29
85
6C
F9
FF
A5
F8
D@
FA
AD
AE
X
AS
no

48
43
29
20
30
A2

AS
9a
@2
B2
AS
9A
84
93
BC
c9
20
@D
co

20
2C
OF
BA
30
151
AS
99
00
BA
20
20
A5
20
99
4C

FA
4A
@F
D2
c9
@2

90
78
48
AE
90
6C
B9
AS
20
@D
CF
Fo
10

CF
D@
F@
20
g3
D@
be
29
20
20
20
79
c2
CF
20
47

oo
20
20
FF
3A
BS

20
AD
AD
3D
20
B2
88
40
CF
Fo
FF
29
DO

FF
DC
ES
CF
6C
D4
43"/
10
96
79
CF
FA
85
FF
D2
F8

A5
60
60
68
90
co

D2
39
3B
B2
D2
AQ
84
85
FF
38
Cco
91
EC

co
20
c9
FF
32
AS
20
D@
F9
FA
FF
153
AF
CS
FF
00

Cl
FA
FA
4C
B2
48

FF
B2
B2
AC
FF
AD
B7
BB
c9
c9
22

4c

48
0o
0o
D2
69
B5

327

Appendix F

328

pBBO
¢BB8
9BCO
9BCS8
PBDO
@BD8
@BED
?BES
@PBFO
PBF8

BCcoo
gcoes
pClo
pCcls
BC20
pCc2s
BC30
pC38
BCcan
Bcas
acse
BC58
aceo
BC68
gCc7o
aCc78

BC8o
pces
acon
pcasg
OCAD
gcas
aCcBo
pCB8
gcco
pccs
@CcDo
ecpD8
@CEQ

Cc2
F3
85
85
20
20
18
@A
20
o)

69
Cl
26
F8
2o
FA
Fa
00
3F
A9
80
60
A2
ce
A5
0E

4C
38
A8
20
20
20
90
FB
20
D@
1E
85
D@

33
E5
85
69
ac
2F
15
1534]
a5
EB
65
C4
3D

ceo
20
20
60
F8
F8
20
85
FA
90

@2
08
c2
c9
8D
20
90
79
9A
20
54
C3
B5S
95
A4
90

FB
Cl
1E
FA
FB
FB
A6
90
FB
20
C3
20
Al

68
88
88
A9
00
00
AF
2A
20
g2

2C
B4
D6
20
00
8F
#9
FA
A9
D2
FD
D@
co
27
C4
BB

154]
85
60
no
3%}
no
26
5F
2%}
28
85
gcC
Cil

A5
1E
20
20
20
29
Do
Al
20
FB
C3
FB
81

Cc2
0o
20
00
20
20
2o
3E
2A
28

00
D@
60
F9
g1
00
20
BO
20
4c
ca
E6
B5
D@
ES
28

C3
98
D4
ES
E5
69
64
Cl
33
o
98
0o
C3

CA
90
9@
85
Do
Do
2A

38
29

00
2
20
60
20
20
3E
DE
D2
47
D@
c4
27
F3
B2
A4

A4
E5
Fa
FA
FA
FA
20
81
F8
18
65
A6
20

Do
B2
g2
2A
29
RE
A
00
60
oF

B4
E6
3E
AS
CcC
7C
F8
AE
FF
F8
Fa
60
95
60
BO
29

C4
C2
o
00
00
00
28
C3
o
AS
C4
26
28

w oo L

Appendix F

ACES
eCFo
@aCF8

oD0o
eDe8
eD1o
pD18
PD29
0D28
PD30
PD38
2D40
D48
@D50
@D58
D60
D68
D70
D78

oD8 o
¢D88
0DS0O
PDo98
@DAQ
ODAS
PDB@
2DB8
eDCo
pDC8
#DDO
PDD8
@DE®
ODES8
6DFPQ
@DF8

PEGQ
PEDS

FB
20
20

20
20
90
20
81
4cC
20
20
20
3E
3E
CF
D@
20
02
09

20
D2
po
02
F3
0o
8D
47
20
86
90
20
85
A°
00
54

54
20

0o
BB
D4

E5
3E
14
2F
Cl
ED
D4
ES5
3E
F8
F8
FF
Fl
8F
E8
20

Do
FF
AQ
D@
20
20
20
F8
A5
28
20
6A
Cl
91
AD
FD

FD
D9

B9
FA
FA

FA
F8
85
FB
20
FA
FA
FA
F8
0o
00
c9

FA
20
88

EC
20
0o
@c
41
33
2F
0o
c2
A9
D2
FC
84
20
2C
00

1534]
FC

34
20
151

0o
0o
1D
00
33
00
0o
00
X'
Cco
9D
2D
1C
00
CF
FA

86
57
0o
Cc8
FA
F8
FB
20
85
93
FF
20
c2
D2
20
20

A2
(434]

20
4c
20

20
20
A6
90
F8
4cC
20
20
A2
27
10
Fo
8E
9@
FF
00

1cC
FD
Bl
E8
20
00
0o
D4
21
20
A9
20
Cé
FF
c2
41

no
48

B8
7D
69

69
88
26
ac
1]
47
69
69
00
DY
62
22
00
Cé
Cc9
90

AS
00
Cl
E4
20
Ab
BO

A2
D2
16
CA
1D
4C
F8
FA

0o
20

FA
FB
FA

FA
FA
Do
A5
DO
F8
FA
FA
153
14
E8
E@
2o
9D
@D
B6

90
A2
DD
1C
54
26
DD
o
00
FF
85
FC
Do
47
o0

Al
1F

q4<
92/
K&/

ga ¢
769
15§
¢80
/

s
%)

\QEPJ‘DQ
PSS T
C\{::fﬁGfg

[3

E;N
o
O

A

ol e T P
o -~
-5 A

329

Appendix F

330

L

AE1D
PE18
PE20
PE28
PE30
PE38
PE4D
PE4S
QESQ
PES8
PE6OQ
PE6S8
PETD
@E78

PE8BD
PEBS
PESD
PES8
GEAD
QEAS8
OEBO
PEBS
PECO
PECS
BEDO
PED8
PEEQ
PEES
GEFO
PEFS8

PFOO
PFo8
OFle
BFr18
BF20
gF28
PF30
PF38

no
E®Q
AS
20
2A
A5
B3
60
21
86
60
gl
A8
22

AA
4A
80
2o
29
Fo
20
60
g1
90
60
B9
2o
88
CA
4C

69
69
A9
00
2o
Fo
4C
AS

68
@3
2A
C2
90
FD
20
20
c8
1C
A5
88
4A
Fo

BD
4A
AS
85
8F
2B
88
Bl
20
Fi
A8
77
AQ
DO
DO
D2

Fa
Fa
90
20
85
B85
47
@3

20
D@
CS
FC
gE
151
A5
CD
98
20
1F
65
90
13

D9
4n
ga
2A
AA
4A
D@
C1l
FE
A2
B9
FF
B85
F8
EC
FF

0o
0o
20
72
Cl
20
F8
85

35
12
E8
Bo
BD
BD
FD
FC
20
48
38
Cl
@B
29

FE
29
0o
29
98
90
FA
20
FA
@3
37
00
26
69
AS
20

20
A2
D2
FC
84
2F
8%
1D

FD
A4
Bl
88
2A
30
po
(434]
Cc2
FA
a4
99
4A
B7

(434]
gF
AA
B3
ADQ
8
Cc8
c2
153
Cco
FF
85
29
3F
20
D4

E5
e
FF
e
Cc2
FB
20
20

Bo
1F
Cl
D@
FF
FF
CA
AA
FC
154]
C2
21
B@
29

BO
DO
BD
85
g3
4A
88
FC
C4
04
(5]
29
26
20
2C
FA

FA
151}
20
20
20
ne
D4
3E

A2
1)
B9
F2
2o
Bo
D@
E8
151
A6
AA
c8
17
80

24
n4
1D
1F
EB
4a
D@
153
1F
90
85
AS
28
D2
AS
00

po
86
57
CA
El
B@
FA
F8

26
gE
1C
06
29
Fo
D5
D@
8A
1C
10
60
co
4A

4a
AQ
FF
98
8A
B9
F2
A2
c8
F2
28
]
2A
FF
8D
20

29
28
FD
FC
FF
ES
o
154]

©/0
90 2%
/214
oo
M11¢
/150
o176
195
G469
710
&9
€1
g/
LR g

/1084
656
946

S35
103 |
639

OIS
1106
964

N3
931

q0v
32
1257
]013%
1067

oo ~ 6
C\m(,\&:
ol R o
—
P o=

«o0-D

Appendix F

@F40
@F48
AF50
@F58
PFreo
@F68
BF70
@F78

QF8o
gr8s
BF90
@Fros8
@FAQ
QFAS8
gFB@
QFB8
gFCo
grcs
@FDO
@FD8
@FEQD
QFES8
@FF0
@FF8

1000
1008
1010
1918
1020
1928
1030
1938
1040
1948
1950
1958
1060
1068

20
85
FC
FF
FA
CccC
23
6E

F6
FF
F5
9C
Cl
10
20
F@
26
29
FF
A2
Fo
B@
20
EB

0o
3]
20
FE
DO
Fo
20
04
2o
Ad
91
Cl
C2
20

Al
Cl
"X')
60
X'
FA
68
11

167.
Cc9
20
FA
A9
@2
29
75
20
AR
e
g6
15
21
Cl
26

BD
D@
B8
20
AQ
28
1C
A5
C8
1F
Cl
20
A9
C2

F8
A5
C5
20
8E
20
38
g2

D@
@D
D@
20
30
E8
86
A2
D9
BC
20
E@
A5
20
FE
2A

2A
B5
FE
Do
20
A5
FB
1E
D@
D@
88
CA
90
F8

29
21
28
D4
11
48
E9
6E

ED
Fo
FE
A4
9D
D@
26
1%
FC
37
B9
@3
2A
BF
20
99

FF
CA
29
A6
69
29
0o
19
FA
03
D@
FC
20
0o

D@
85
F@
FA
a2
CA
3F
10

A2
1E
0o
Cl
19
DB
Fo
2o
2o
FF
FE
D@
C9
FE
Do
@B

g
D@
D@
A5
FA
C9
90
oa
A5
B9
F8
0o
D2
20

F8
C2
03
oo
A2
D@
AQ
02

02
163}
BO
84
22
86
24
86
A6
2o
1Y)
19
E8
o))
C7
BC

20
D1
AB
28
29
9D
oA
4C
1E
C2
A5
85
FF
54

A5
4C
20
20
23
F9
@5
88

20
20
oF
C2
E8
28
E6
1D
2A
BD
D@
A4
A9
Do
88
39

B9
Fo
20
C5
A4
D@
98
ED
10
0o
26
Cl
AQ
FD

20 /
46
D2
69 P
2066Y

a2 /391
4a ¢9€

DG 4O |

.\Q

~¥g

~D
L= ¢

o-Q
PO

CF (296
FO /2/ 2
20 942
85 (221
9D 91Y
A2 /0/%
26 bXY
AS §Y1
86 ¢V¥I
77 1o11
E3)il
1F 9213
3¢ 111§
CC /g9¢
D@ 1224
FF 9219

FE 95
A /y5 Y
B8 10675
1D /0§49
1F 940
1A 1077%
pe Y2y
FA vy
F6 7/,
o1 1T
/20¢
84 /)%
41 /229
00 sY2

331

Appendix F

332

v

\}’\

1879
1078

1089
1088
1090
1098
10A0
10A8
10B0
10B8
18C@
16C8
10D0
l1eD8
10E0Q
10E8
10F0
10F8

1100
1108
1110
1118
1129
1128
1130
1138
11490
1148
1150
1158
1160
1168
1179
1178

1180
1188

20
A9

X%
98
10
28
60
@8
@8
08
@8
D@
33
33
33
A9
0o
85

59
1C
9D
0o
23
Al
24
2o
A5
A5
26
68
84
4A
A2
B2

1A
c4

41
@5

A8
Fo
02
60
38
49
40
40
40
8C
D@
D@
D@
0o
20
9D

0o
3A
8A
0o
24
20
24
C
69
69
62
44
74
72
A2
32

1A
CA

FA
20

20
OE
88
Cc9
60
@9
29
09
89
44
8C
08
08
0o
59
2C

Ba
1C
1D
29
53
00
AE
0o
29
23
94
E8
B4
F2
74
B2

26
26

0o
D2

BF
86
E8
30
49
30
40
40
o
00
44
40
40
21
4D
29

58
23
23
19
1B
1A
AE
%)
53
AQ
88
94
28
Ad
74
0o

26
48

20
FF

FE
1C
86
90
B2
22
B2
g2
0o
0o
9a
09
09
81
91
2C

24
5D
9D
AE
23
5B
A8
15
84
D8
54
0o
HE
8A
74
0o

72
44

54
4C

0o
A6
1D
23
45
45
45
45
22
11
10
10
62
82
92
23

24
8B
8B
69
24
5B
AD
9C
13
62
44
¥
74
po
72
22

72
44

FD
BO

D@
1D
A6
c9
03
33
33
B3
44
22
22
22
13
09
86
28

oe
1B
1D
A8
53
A5
29
6D
34
5a
c8
B4
F4
0o
44
0o

88
A2

6o
Al
Al
19
19
69
8o
9C
11
48
54
28
CcC
AA
68
28

Cc8
C8

Appendix F

1190 3A 3B 52 4D 47 58 4C 53 39Y%
1198 54 46 48 44 50 2C 41 42 3¢9
11A0 F9 0@ 35 F9 00 CC F8 080 /o(R
11A8 F7 F8 00 56 F9 00 89 F9 /41 /s
11B@ @@ F4 F9 00 @C FA 00 3E §£/7

1188 FB 080 92 FB 00 CO FB 00 /7 [
11C8 38 FC 00 SB FD ¢@ 8A FD /& ¥3
11C8 @0 AC FD 00 46 F8 0@ FF 29¢f

11D@ F7 @@ ED F7 00 0D 20 20 §4§

11D8 20 5@ 43 20 20 53 52 20 ¢ Yo
11E@ 41 43 20 58 52 20 59 52 $37
11E8 20 53 58 AA AA AA AA AR [QY5

Program 3. Supermoné64 Checksum.

100
119

120

139

140

150
160

REM SUPERMON64 CHECKSUM PROGRAM
DATA 101706,13676,15404,14997,15136,
16221,16696,12816,16228,14554
DATAl4677,15@39,14551,151@4,15522,
16414,15914,8958,11945 :5=2048
FORB=1T019:READX: FORI=STOS+1 28 :N=P
EEK(I):Y=Y+N

NEXTI: IFY<>XTHENPRINT"ERROR IN
BLOCK #"B:GOTOl6d

PRINT"BLOCK #"B" IS CORRECT"
S=I:Y=0:NEXTB:REM CHECK LAST SHORT
BLOCK BY HAND

333

Appendix G
The Wedge

One of the best reasons to learn machine language is that it can
improve your BASIC programming significantly. There are two main
ways that machine language can assist BASIC programming: adding
commands to BASIC itself and replacing parts of a BASIC program
with a high-velocity machine language subroutine. To add an ML
subroutine to a BASIC program, you SYS, USR, or CALL (from
Microsoft, Atari, or Apple BASICs respectively). That’s fairly
straightforward. To make changes to the BASIC language itself,
however, we need to wedge into BASIC somehow.

You can make BASIC a customized language with a wedge. Do
you want auto-numbering when writing a program in BASIC? Add it.
Does your BASIC lack a RENUMBER facility? You can give it one. Do
you want all your BASIC programs to contain a REM line with your
name in it? This could be automatically put into each of your
programs if you know machine language. Using a wedge to a
machine language program, you can communicate directly to your
machine, bypass BASIC’s limitations, and do pretty much what you
want to do.

How To Wedge In

Adding commands to BASIC is a matter of interrupting a loop. This is
often referred to as adding a wedge into BASIC. Under the control of
the BASIC language, the computer is looking to see if a BASIC word
has been typed in, followed by a hit on the RETURN key. Or, during
aRUN, the computer examines the program in memory to see what
you want accomplished.

These, then, are the two contexts in which the computer
analyzes a BASIC word: in a program or in “‘direct mode.”” In direct
mode, you can type the word “LIST"’ onto the screen and hit the
RETURN key. The computer looks up the meaning of “LIST” ina
table of words which includes the addresses of the appropriate ML
subroutines. It then JSR’s (Jumps to a SubRoutine) somewhere in the
vast ML of your computer’s BASIC. This subroutine performs the
actions necessary to provide you with a listing of the program in your
computer’s memory. If you could add some additional words to this
table, you could add to BASIC. You could customize it.

Here’s how. When you first turn on a computer which uses
Microsoft BASIC, one of the first things that happens is that the
operating system puts some important ML instructions into a zone in

335

Appendix G

the first 256 memory locations (this area of RAM is called zero page).
These instructions are put into zero page to handle the loop — often
called the CHRGET loop (which means ‘‘character get’’) — where the
operating system will forever after jump while power 1s on. This
location is of great importance to BASIC; it is the "“did they type any
BASIC into the computer?”” subroutine. It's where BASIC analyzes
what it finds on screen or 1n a program, looking at something
character by character to see what 1t adds up to.

If you type "/LIST, "’ this little zero page ML subroutine looks at
the ““L”’ then the "’'I'” and so on. The exact location of CHRGET
differs on the various computers:

PET (Original BASIC): decimal address 194-217
PET/CBM (Upgrade & 4.0): 112-135
VIC: 115-138
64: 115-138
Apple: 177-200
The CHRGET ML program looks like this:

0070 E6 77 INC $77

0072 DO 02 BNE $0076

0074 E6 78 INC $78

0076 AD 03 02 LDA $0203
0079 C9 3A CMP #S$3A
007B BO 0A BCS $0087

007D C9 20 CMP #s$20
007F FO EF BEQ $0070
0081 38 SEC
0082 E9 30 SBC #$30
0084 38 SEC
0085 E9 DO SBC #SDO
0087 60 RTS

This is put into your zero page RAM within the first few seconds
after you turn on the computer. You can change it (RAM memory can
be changed) to jump (JMP) to your own ML program by replacing the
tirst three bytes of code. In our example above, we will replace the
three bytes at hexadecimal location 0070 (the exact address will vary
according to the CHRGET location as listed above for the different
computers). Here is how the replacement looks in the example
CHRGET routine:

0070 4C 00 75 JMP $7500
0073 02 2?2

336

Appendix G

0074 E6 78 INC $78

0076 AD 02 02 LDA $0202
0079 C9 3a CMP #S$3A
007B BO O0A BCS $0087

007D C9 20 CMP #S$20
007F FO EF BEQ $0070
0081 38 SEC
0082 E9 30 SBC #$30
0084 38 SEC
0085 E9 DO SBC #SDO
0087 60 RTS

The effect that this has 1s dramatic. Whenever the computer
looks for a character in BASIC mode, it will jump first (because you
forced it to) to your personal ML ““wedged’’ routine located at $7500.
The subroutine at $7500 could be anything you wanted it to be,
anything you’ve put at address $7500. For an example, we’ve caused
an ‘A"’ to appear on the PET/CBM screen:

7500 E6 77 INC $§77
7502 DO 02 BNE $7506
7504 E6 78 INC $78

7506 A9 41 LDA #s$41
7508 8D 00 80 STA $8000
750B 4C 76 00 JMP $0076

Notice that we had to first perform the actions that the CHRGET
would have performed. Before we can start our LDA #$41 to put an
A’ on screen, we had to replace the early part of CHRGET that we
wrote over (see 7500 to 7505 in Example 3). And, after we’'re done
with our custom routine, we jump back into CHRGET at 750B.

Adding a wedge to Atari BASIC is somewhat more involved. A
clear and complete exposition of the techniques involved appears in
an article by my colleague Charles Brannon, ‘‘The Atari Wedge"”’
(COMPUTE! Magazine, November 1982).

337

Index

A

A or AC register (see Accumulator)
Absolute addressing 25, 40-42, 45, 46, 48, 51, 56, 68, 69, 75, 81
Absolute, X and Absoute, Y addressing 48, 51, 68, 69, 75, 81
Accumulator 19, 26, 31, 33, 39, 56, 66
Accumulator mode 51
ADC 20, 56, 58, 68, 149
Addresses 1, 2, 19, 20, 47, 54, 77, 85, 99, 124, 127, 128, 130, 139, 140,
146
get a character address 1
last key pressed 77
safe place address 1, 2
start of RAM 1, 99
start print address 1
which key is pressed? 1, 54, 127, 128
Addressing 18, 22, 40
Addressing modes 12, 33-34, 37-51, 68, 69, 75, 81, 149-166, 223, 224
Absolute 25, 40-42, 45, 46, 48, 51, 56, 68, 69, 75, 81
Absolute, X and Absolute, Y 48, 51, 68, 69, 75, 81
Accumulator mode 51
Immediate 25. 33. 34, 43, 51, 66, 68, 69
Implied 43-45, 55, 81
Indirect Indexed 74, 125, 141
Indirect X 51, 68, 69
Indirect Y 42, 49, 51, 57, 58, 69, 70, 74, 77, 85
Relative 25, 45-47, 69
Zero Page 33, 34, 42-43, 51, 55, 65, 68, 69, 75
Zero Page, X 48, 68, 69. 75
Zero Page, Y51
"’ Alphabetic’” mode 54
AND 39, 88, 89, 149
Arcade game programming in ML w1
Argument viii, 40, 55, 69, 70, 77, 81, 223, 224
ASCII code 3, 9, 53, 70, 78, 131, 144
ASL 51, 59, 68, 89, 149
ASM mode (Atari monitor) 27, 28, 110
Assembler vii, 2, 35, 45, 46, 61, 140, 223
assembler program 18
traditional conventions, list of 224
two-pass assemblers 72, 223, 225

339

Index

Assembler Editor (Atari) 23, 26, 28, 110, 130, 143
Assembly language vii (see machine language)
Assignment of value (see LET)

Atari monitor (see Assembler Editor; DEBUG)
Atari source code 143

ATASCII 3, 144

Attract mode 124

Auto-booting 125

BASIC v-vi, vii-xii, 1-4, 7, 19, et passim
advantages of xii
commands vii, 63, 121-147

ASC 144

CHRS$ 144

CLR 121-22

CONT 86, 122

DATA xi1, 122-23, 140
DIM 123

END 63, 124-25
FOR-NEXT 125-26
FOR-NEXT-STEP 126-27
GET 40, 93, 127-28, 131
GOSUB 81, 128-29, 141, 142
GOTO 18, 84, 85, 129-30
[F-THEN 69, 71, 131
INPUT 131-32, 133
LEFT$ 144, 145

LEN 145

LET 132-34

LIST xi, 134

LOAD 30, 92, 134-35
MID$ 145

NEW 121, 135-36

ON GOSUB 71, 136, 137
ON GOTO 69, 71, 74, 137
PRINT x, 40, 137-40
READ 140

REM 140

RETURN 5, 131, 141
RIGHT$ 145-46

RUN 141-43

SAVE 30, 110, 143

SPC 146-47

STOP 122, 124, 143

340

Index

TAB 146, 147
loaders 19
Microsoft BASIC vii, 2, 4, 17, 91, 93, 105, 135, 141, 144, 224, 335
words xi
BCC 45,59, 61, 69,71, 74, 75, 131, 150
BCS 45, 59, 61, 69, 71, 74, 75, 150
BEQ 25, 45,47,59, 69, 71, 77, 131, 151
Binary numbers 7, 8, 9, 15, 243-50
program for printing table of 16
BIT 89, 151
Bits and bytes 8, 9, 10, 12-15
BMI 45, 59, 61, 68, 71, 74, 75, 151
BNE 24, 45, 59, 61, 69, 71, 72, 74, 75, 77, 131, 151
BPL 24, 45, 59, 61, 68, 71, 74, 75, 152
Branch address 47
Branches:
ON-GOTO 74
forward 78
Branching instructions 25, 45, 46, 47, 59, 67. 68, 69, 71-72, 73, 88
BRANCHTARGET 72, 74
Breakpoints 86, 87, 143
BRK 29, 30, 34, 37, 45, 61, 67, 86-87, 90, 122, 124, 134, 143, 152
Buffer 42, 98
BUG 28, 142
Bugs 31, 33-34
BVC 45, 63, 68, 71, 152
BVS 45, 68, 71, 152

C

CALL instruction viii, x, xi, 23, 65, 141

Carriage return 54, 144

Carry flag 37, 39, 45, 56, 58, 68, 69

Cassette buffer 1

CHRGET loop 336

CHRGET ML program 336

Circumflex 26, 223

CLC 43, 56, 58, 68, 109, 153

CLD 43, 56, 68, 153

CLI 89, 153

CLV 63, 153

CMP instruction 8, 33, 34, 61, 69, 70, 71, 75, 77, 89, 127, 128, 131, 136,
145, 154

Code 53

“’Cold start’’ address 124

341

Index

Comma, use of 79, 223-24
Commands:
BASIC 63, 121-47
machine language 63, 64-90, 149-66
Commodore character codes 144
Commodore Monitor Extension 26
Comparisons 70
Compiled code 92
Compilers 92-93
Conditional branch 129, 131
Control characters 273, 276
Counter variable 125
Counters 125-26
CPU (central processing unit) 8, 18, 37, 39
CPX 70, 154
CPY 70, 154
Cursor address 77
Cursor controls (PET) 30
Cursor management 77
Cursor position 140, 147

D

Data table 31, 121, 225
Debug xii
DEBUG (Atari monitor mode) 26, 28, 29, 142, 143
commands in 28-30
Debugger 23, 36
Debugging 86
methods 87-88
DEC 75, 155
Decimal address 19
Decimal flag 56
Decimal numbers 8, 9, 10, 14, 16, 243-50
Default 92
Delay loop 83-84, 125-26, 129
Delimiter 78, 138, 145, 146
DEX 45, 75, 84, 155
DEY 45, 75, 155
Dimensioned memory 123
Direct mode 4, 335
Disassembiler viii, 20, 134
Disassembly viii, ix, 20, 140
Disassembly listings 25
Dollar sign ($) 10, 12, 28, 223
Do-nothing loop (see Delay loop)

342

Index

DOS (disk operating system) xi, 135
Double compare 59

Echo 131

EDIT mode (Atari monitor) 27, 28, 30, 143
Effective address 85

END 4 (see Pseudo-ops)

Endless loop 33, 54, 74, 76, 124, 125, 145
EOR 39, 88, 156

Equates 72

Error messages 26, 48, 77

F

Fields 25, 27
Filename 143
FILL instruction 67
“’Fill memory’* option 135
FIND command (Atari) 110-118
Flags 8, 12, 31, 37, 39, 45, 56, 61, 66-67, 68, 69, 77, 131
B flag 68, 86
C or Carry flag 37, 39, 45, 56, 58, 68, 69
D flag 68
Iflag 68, 86
interrupt flag 89
N or Negative flag 64, 66, 68, 69, 75, 89
status register flags 68, 131
V or overthrow flag 45, 68, 89
Z or Zero flag 39, 64, 66, 67, 68, 69, 71, 75,77, 78, 89, 130,
131, 138, 145
Floating point accumulator 141
Floating point arithmetic 59, 142

G

GET#93

H

Hexadecimal numbers viii, 1-2, 7, 8, 9, 10, 11-12, 16-17, 45, 243-50
conventions of 12
Hex dump 19, 20, 24

343

Index

Immediate addressing 25, 33, 34, 43, 51, 66, 68, 69
Immediate mode 141
Implied addressing 43-45, 55, 81
INC 75, 156
Indirect-indexed addressing 74, 125, 141
Indirect jump 85, 224
Indirect X addressing 51, 68, 69
Indirect Y addressing 42, 49, 51, 57, 68, 69, 70, 74, 77, 85
Initialization routine 121
"“Instant action’’ keys 54
Instruction field (see Fields)
INT mode 25
Interactivity 34-35
Interpreter 125, 133
Interrupt request 31, 86
Interrupts:
maskable 89
non-maskable 90
INX 45, 55, 75, 156
INY 45, 75, 157
IRQ 31, 37, 39, 86

J

JMP instruction 18, 24, 34, 81, 82, 84-85, 91, 128, 129, 130, 157
JSR 24, 25, 45, 67, 71, 72, 80, 81, 82, 91, 92, 124, 129, 130, 136, 141, 143,
157

K

Kernal 91
Kernal jump table 91, 92, 94, 128

L

Label table 72
Languages vii, xi
FORTH 82
(see also BASIC; Machine language)
LDA 20, 25, 26, 29, 33, 39, 40, 43, 45, 48, 55, 61, 63, 64, 66, 69, 71, 158
LDX 51, 64, 66, 158
LDY 33, 34, 64, 66, 159
Loaders ix-x

34

Index

Loops 67, 75-84, 125-28, 335

delay 83-84, 125-26, 129

endless 33, 54, 74, 76, 124, 125, 145

FOR-NEXT 46, 47, 75, 125-26

indexed 48

nested 76, 127

timing 76
LSB (Least Significant Byte) 49, 51, 58, 70, 85, 126, 139, 141, 243-50
LSR 51, 59, 68,89, 159

M

Machine language (ML)
advantages of vili, x1
equivalents of BASIC commands 121-47
INPUT subroutine 131-32
instruction groups 64-90
arithmetic 39, 68-69
debuggers 86-90
decision-makers 69-75
loop 75-81
subroutine and jump 81-86
transporters 64-68
instructions vii, 121-47, 149-66
monitor 253, 269-333
strings 77-80, 144-47
subroutines 31, 91-96
Maps 42
Atari Memory Map 205
Commodore 64 Memory Map 193-204
PET/CBM 4.0 BASIC ROM Routines 175-80
PET/CBM 4.0 BASIC. Zero Page 172-75
PET Original and Upgrade BASIC 167-69
Upgrade PET/CBM 169-72
VIC Zero Page and BASIC ROMs 181-92
Masking 88-89
Mass-move 80
Memory addresses 1, 2, 20
Memory dump, 24, 28-29, 30, 275
Memory map 1 (see also Maps)
Memory mapped video 70
Memory zones 133
Message table 138
Message zone 77
Micromon 23, 31, 130, 269-333
VIC Micromon 296-318

345

Index

Mnemonics 18, 20, 149-66
Modes:
BASIC mode 142
monitor mode 19, 26, 142, 143
(see also Addressing modes)
Monitor 18, 22, 23-37
Apple Il monitor 23-26, 143
Atari monitor 26-28 (see also ASM; Assembler Editor; Debugger)
interactive monitors 34-35
monitor extensions 253-334
PET, VIC, and Commodore 64 monitor 30
““resident’” monitor 30, 253
(see also Micromon; Supermon)
““Move it"’ routine 130
MSB (Most Significant Byte) 49, 51, 58, 70, 85, 99, 126, 138, 139, 141,
243-50
Multiple branch test 136

Natural numbers 7
NOP 45, 86, 169
uses of 87-88
Number tables (hex, binary, decimal) 243-50

o

Object code 18, 22, 28, 47, 225, 226
Opcode 18, 20, 55, 66, 223, 224
Operand 55 (see Argument)

ORA 160

OS (operating system) 42

P

Page 33
page one 42
page six 68, 110
page zero 33, 42, 51, 56, 57, 98, 139, 140, 336
Parameters 67, 83, 128, 141
PET ASCII 3
PHA 45, 67, 81, 82, 160
PHP 45, 67, 160
PLA3, 4,5, 45, 67, 82, 161
PLP 45, 67, 161

346

Index

Pointers 49, 51, 57, 98, 109
zero page 77
Pound sign (#) 25, 43, 55
Powers of a number 7-9
PRINT routines 140
Program counter 37, 39, 55, 65, 141
Programs:
Adding the Conversion Pseudo-op 226
Apple Version (of Search BASIC Loader) 119-20
Atari Disassembler 240-42
Atari Hex-Decimal Converter 11
BASIC Loader 19
Binary Quiz for All Computers 15-16
CHRGET ML program 336
Decimal to Hex, Microsoft BASIC 17
Disassembler 237-40
Double Compare 60
FIND Utility for Atari BASIC 112-18
for printing out table of binary numbers 16
Full Assembly Listing 21
Labelled Assembly 21
Micromon 269-333
Microsoft Hex-Decimal Converter 10-11
Microsoft Table Printer 250-51
PET Search (4.0 BASIC Version) 100-104
Simple Assembler 227-36
Atari Version 231-36
VIC, PET, Apple, 64 Version 227-30
64 Search BASIC Loader 119
The Source Code by Itself 22
Supermon 253-68
Supermoné4 319-33
VIC Micromon 303-18
VIC-20 Search BASIC Loader 120
Prompts 31
Pseudo-ops 4, 27, 28, 29, 47, 224-26
PUT#6 93 :

R

RAM (Random Access Memory) viii, xi, 1, 2, 4, 9, 12, 19, 31, 33, 37,
42, 80, 97, 98, 225
Reference sources 221
Registers 26, 28, 30-31, 57, 66, 70, 82
Relative addressing 25, 45-47, 69
REM statements xii, 20
"’Resolving’’ labels 225
347

Index

ROL 51, 89, 161

ROM (Read Only Memory) xi, 1, 12, 23, 25, 26, 128, 253
ROR 51, 63, 89, 162

RTI 63, 89, 90, 162

RTS 20 25, 45, 67, 81, 124, 129, 136, 141, 143, 162

S

Safe areas 2-3, 42, 63, 97-98, 99, 105

SBC 61, 68, 163

Screen address 139, 140

Screen position (see STA)

Search bloader 119-20

Search routine 88

SEC 43, 58, 61, 68, 163

SED 43, 56, 63, 163

SEI 89-90, 164

SGN command 63

Simple Assembler 1, 2, 3, 4, 5, 10, 17, 22, 25, 26, 27, 28, 35, 43, 47, 57,
73,74,79, 223-36

Single-stepping 87

6502 machine language (see Machine language)

Softkey 132

Source code 18, 19, 22, 28, 49, 72, 225

Source program 140, 225

Spaces, important 224

STA 20, 40, 49, 51, 55, 56, 57, 63, 64, 65, 67, 164

Stack 42, 67-68, 81-83, 141

Stack pointers 26, 28, 37, 39

Status Register 8, 26, 28, 31, 39, 56, 66, 68, 82

Ster 26, 29-30, 31, 126-27

String handling 77-80, 144-47

Structured programming 85

STX 51, 64, 67, 164

STY 64, 67, 165

Subroutines 31, 91-96

Supermon 23, 31, 130, 253-68

Supermon64 319-333

Symbols 53

SYS instruction v, viii, x, xi, 19, 25, 30, 65, 124, 141

T

TAN command 63
Target address 130, 139, 146
TAX 64, 66, 165

348

Index:’

TAY 64, 66, 165

TIM (terminal interface monitor) 142, 270, 271, 272, 275
Toggle 88-89

Trace 26, 29, 31

TRACE 87

Transfer 130

“*Truth tables’’ 89

TSX 67, 165

Two-pass assemblers 72, 223, 225
TXA 43, 45, 55, 64, 66, 166

TXS 67, 166

TYA 39, 43, 64, 65, 66, 166

U

Unconditional branch 129, 130

Unmatched RTS 141, 143

Upward arrow 223 (see also Circumflex)

USR instruction v, viii, x, xi, 3, 4, 19, 63, 64, 67, 110, 111, 124, 141, 142

v

Variable x-xi, 132-34, 140
storing 57
Vector 86

W

““Warm start’’ address 124
Wedge 335-37

X

Xregister 46, 51, 67, 75, 125, 126
X and Y registers 26, 31, 39, 45, 48, 66, 75, 93, 94

Y

Y register 26, 34, 39, 57, 70, 147

Z

Zero address 47
Zero page 33, 42, 51, 55, 56, 57, 98, 139, 140, 336

349

Index

Zero page addressing 33, 34, 42-43, 51, 55, 65, 68, 69, 75
Zero page locations 49, 99

Zero page snow 68

Zero page, X addressing 48, 68, 69, 75

Zero page, Y addressing 51

Zone of variables 133, 134

350

’(}7 (4 Z : (J L(g;_k_,tl 4 adclags ey ~ >wuw

Supﬁvv"ou \/)equ A AT oo et

Coy =avte ect |a)1<.l\ t OYvwo

[e reewx Wemori
C-(py sStaids <t

tolov Wewovy
) U.){Avc;'l* (m(1% ()Vf’ﬁiwfd LO ¢

4 Prar o chovaetey
e Gﬂ(“‘ oo elovoeter
oy Ll
S da (e \:s\qcx-,

Cuswette bugpen N \M]h—? KLS- 1049 <$0‘5'6(-4/‘5rﬁ)
Hoae qtem Yais1- S3.2¢4 ($Co@o-CEre)

Machine Language For Beginners

‘Most books about machine language assume a con-
siderable familiarity with both the details of microprocessor chips
and with programming techniques. This book only assumes a
working knowledge of BASIC. It was designed to speak directly
to the amateur programmer, the part-time computerist. It should
help you make the transition from BASIC to machine language
with relative ease.”

— From The Introduction

Contains everything you need to learn 6502 machine language
including:
@ A dictionary of all major BASIC words and their machine
language equivalents. This section contains many sample
programs and illustrations of how all the familiar BASIC
programming techniques are accomplished in machine

language.

® A complete Assembler program which supports pseudo-
ops, forward branches, two number systems, and number
conversions. It can easily be customized following the step-
by-step instructions to make it perform any functions you
want to add.

@ A Disassembler program with graphic illustrations of
jumps and subroutine boundaries.

® An easy-to-use number chart for quick conversions.

® Memory maps, monitor extensions, and all 6502 com-
mands arranged for easy reference.

® Many clear, understandable examples and comparisons
to already familiar BASIC programming methods.

ISBN 0-942386-11-6 $12.95

