. SINGLE DRIVE FLOPPY DISK
USER'S MANUAL

INFORMATION TO USER

“WARNING: THIS EQUIPMENT HAS BEEN CERTIFIED TO COMPLY WITH
THE LIMITS FOR A CLASS B COMPUTING DEVICE, PURSUANT TO SUB-
PART J OF PART 15 OF FCC RULES ONLY PERIPHERALS (COMPUTER
INPUT/OUTPUT DEVICES, TERMINALS, PRINTERS, ETC.) CERTIFIED TO
COMPLY WITH THE CLASS B LIMITS MAY BE ATTACHED TO THIS
COMPUTER. OPERATION WITH NON-CERTIFIED PERIPHERALS IS LIKELY
TO RESULT IN INTERFERENCE TO RADIO AND TV RECEPTION.”

“THIS EQUIPMENT GENERATES AND USES RADIO FREQUENCY ENERGY
AND IF NOT INSTALLED PROPERLY, THAT IS, IN STRICT ACCORDANCE
WITH THE MANUFACTURER'S INSTRUCTIONS, MAY CAUSE INTER-
FERENCE TO RADIO AND TELEVISION RECEPTION. IT HAS BEEN TYPE
TESTED AND FOUND TO COMPLY WITH THE LIMITS FOR A CLASS B
COMPUTING DEVICE IN ACCORDANCE WITH THE SPECIFICATIONS IN
SUBPART J OF PART 15 OF FCC RULES, WHICH ARE DESIGNED TO
PROVIDE REASONABLE PROTECTION AGAINST SUCH INTERFERENCE
IN A RESIDENTIAL INSTALLATION. HOWEVER, THERE IS NO GUAR-
ANTEE THAT INTERFERENCE WILL NOT OCCUR IN A PARTICULAR
INSTALLATION. IF THIS EQUIPMENT DOES CAUSE INTERFERENCE TO
RADIO OR TELEVISION RECEPTION, WHICH CAN BE DETERMINED BY
TURNING THE EQUIPMENT OFF AND ON, THE USER IS ENCOURAGED TO
TRY TO CORRECT THE INTERFERENCE BY ONE OR MORE OF THE
FOLLOWING MEASURES-

REORIENT THE RECEIVING ANTENNA

e RELOCATE THE COMPUTER WITH RESPECT TO
THE RECEIVER

e MOVE THE COMPUTER AWAY FROM THE RECEIVER

® PLUG THE COMPUTER INTO A DIFFERENT OUTLET
SO THAT COMPUTER AND RECEIVER ARE ON DIFFERENT
BRANCH CIRCUITS

“IF NECESSARY. THE USER SHOULD CONSULT THE DEALER OR AN
EXPERIENCED RADIO/TELEVISION TECHNICIAN FOR ADDITIONAL
SUGGESTIONS. THE USER MAY FIND THE FOLLOWING BOOKLET PRE-
PARED BY THE FEDERAL COMMUNICATIONS COMMISSION HELPFUL:
'HOW TO IDENTIFY AND RESOLVE RADIO-TV INTERFERENCE
PROBLEMS.” THIS BOOKLET IS AVAILABLE FROM THE uU.S. GOVERN-
MENT PRINTING OFFICE, WASHINGTON, D.C. 20402, STOCK NO. 004-
000-0034564."

PART NO. 320970

VIC-1541

SINGLE DRIVE FLOPPY DISK
USER'S MANUAL

PN 1540031-02

Cz commaodore
COMPUTER

The information in this manual has been reviewed and is believed to be entirely
reliable. No responsibility, however, is assumed for inaccuracies. The material in
this manual is for information purposes only, and is subject to change without
notice.

Second edition

© Commodore Business Machines, Inc., December 1982
“All rights reserved.”

Table of Contents Page

1.

2.

6.

General Description it 3
Unpackingand Connecting 6
Contentsof Box, 6
Connectionof Cables 7
PoweringOn iiiin.. 7
Insertion of Diskette 8
Using with VIC 20 or Commodore 64 8
UsingPrograms 9
Loading Pre-packaged Software 9
LOAD e e 9
Directoryof Disk 9
Pattern Matching & WildCards 11
SAVE. . .. e 12
SAVEandreplace 13
VERIFY i i 13
DOS Support Program 14
DiskCommands, 14
OPENANDPRINT # it 14
NEW . e 15
COPY e e e e 16
RENAME 16
SCRATCH i 17
INITIALIZE ittt i 17
VALIDATE et e 17
DUPLICATE i, 18
Reading the ErrorChannel 18
CLOSE e e e 18
Sequential Files 19
OPEN. 19
PRINT #and INPUT #, 20
GET#. . oot e e e e 22
Readingthe Directory 23
Random Files 26
Opening a channel for random accessdata 27
BLOCK-READ i, 27
BLOCK-WRITE 28
BLOCK-ALLOCATE ittt 29
BLOCK-FREE 29
BUFFER-POINTER 31
USERIandUSER2 32

7. RelativeFiles e 33
Creatingarelativefile 34
Usingrelativefiles. 35

8. Programmingthe Disk Controller. 37
BLOCK-EXECUTE i, 37
MEMORY-READ iiiiiiiinann. 37
MEMORY-WRITE 38
MEMORY-EXECUTEociriiniinnnnn 38
USERCommands iivinan.. 39

9. Changing the Disk DeviceNumber 39
SoftwareMethod 39
HardwareMethod 40

Appendices

A, DiskCommand Summary0viveunrnns 41
B. ErrorMessages ittt 42
C. Demonstration DiskPrograms 47
D. DiskFormatsTables 54

1. GENERAL DESCRIPTION
Introduction

Welcome to the fastest, eastest, and most efficient filing system available
for your Commodore 64 or VIC 20 computer, your 1541 DISK DRIVE. This
manual has been designed to show you how to get the most from your drive,
whether you're a beginner or an advanced professional

If you are a beginner, the first few chapters will help you through the
basics of disk drive installation and operation As your skill and programming
knowledge improves. you will find more uses for your disk drive and the more
advanced chapters of this manual will become much more valuable.

If you're a professional, this reference guide will show you how to put the
1541 through 1ts paces to perform just abour all the disk drive jobs you can
think of.

No matter what level of expertise you have, your 1541 disk drive will
dramatically improve the overall capabilities of your computer system.

Before you get to the details of 1541 operation, you should be aware of a
few important pomnts This manual 1sa REFERENCE GUIDE, which means that
unless the information you seek directly pertains to the disk or disk drive you
will have to use your Commodore 64 or VIC 20 User’s Guides and Programmer’s
Reference Giudes to find programming informaton. In addition, even though we
give you step-by-step mstructions for each operation, you should become
familiar with BASIC and the instructions (called commands) that help you
operate your disks and drives However, if you just want to use your disk drive
unit to load and save prepackaged software, we’ve included an easy and brief
section on doing just that

Now . .let’s get on with the general information.

The commands for the disk drive come 1n several levels of sophisication.
Starting in chapter three, you can learn how the commands that allow you to
save and load programs with the disk work Chapter four teaches you how
commands are sent to the disk, and mtroduces the disk maintenance commands

Chapter five tells you how to work with sequential data files. These are
very similar to their counterparts on tape (but much faster). Chapter six
introduces the commands that allow you to work with random files, access any
piece of data on the disk, and how you organize the diskette into tracks and
blocks. Chapter seven describes the special relative files Relative files are the
best method of storing data bases, especially when they are used along with
sequential files

Chapter eight describes methods for programming the disk controller
circuits at the machine language level. And the final chapter shows you how to

3

change the disk device number, by “cutting” a hine inside the drive umt or
through software.

Remember, you don’t really need to learn everything in this book all at
once. The first four chapters are enough to get you going, and the next couple
are enough for most operations Getting to know your disk drive will reward you
1n many ways—speed of operation, reliability, and much more flexibility in your
data processing capabilities.

Specifications

This disk drive allows you to store up to 144 different programs and/or
data files on a single mim-floppy diskette, for a maximum of over 174,000 by tes
worth of information storage.

Included in the dnive 1s circuitry for both the disk controller and a
complete disk operating system, a total of 16K of ROM and 2K of RAM
memory. This circuitry makes your Commodore 1541 disk drive an “intelligent”
device. This means it does its own processing without taking any memory away
from your Commodore 64 or VIC 20 computer. The disk uses a “pipeline”
software system. The “pipeline” makes the disk able to process commands while
the computer 1s performing other jobs. This dramatically improves the overall
throughput (input and output) of the system.

Diskettes that you create n this disk drive are read and write compatible
with Commodore 4040 and 2031 disk drives. Therefore, diskettes can be used
interchangeably on any of these systems. In addition, this drive can read
programs created on the older Commodore 2040 drives.

The 1541 disk drive contamns a dual “‘senal bus” interface. This bus was
specially created by Commodore. The signals of this bus resemble the parallel
IEEE-488 interface used on Commodore PET computers, except that only one
wire 1s used to communicate data instead of eight. The two ports at the rear of
the drive allows more than one device to share the serial bus at the same time.
This 1s accomplished by “daisy-chaining” the devices together, each plugged into
the next. Up to five disk drives and one printer can share the bus simultaneously.

Figure 1.1 Specifications VIC 1540/1541 Single Drive Floppy Disk

STORAGE

Total capacity

Sequential
Relative

Directory entries
Sectors per track
Bytes per sector

Tracks
Blocks

IC’s:

6502
6522(2)

Buffer
2114 (4)

PHYSCIAL:
Dimensions
Height

Width
Depth

Electrical:

Power requuiements

Voltage

Frequency

Power
MEDIA:

Diskettes

174848 bytes per diskette
168656 bytes per diskette
167132 bytes per diskette
65535 records per file
144 per diskette

17 to 21

256

35

683 (664 blocks free)

MICTOPIOCESSOr
1/0, nternal timers

2K RAM

97 mm
200 mm
374 mm

100, 120, 220, or 240 VAC
50 or 60 Herts
25 Watts

Standard mini 547, single sided,
single density

2. UNPACKING AND CONNECTING
Contents of Box

Included with the 1541 disk drive unit, you should find a gray
power cable, black serial bus cable, this manual, and a demonstration diskette.
The power cable has a connection for the back of the disk drive on one end, and
for a grounded (three-prong) electrical outlet on the other. The seral bus cable 1s
exactly the same on both ends. It has a 6-pin DIN plug which attaches to the
VIC 20, Commodore 64 or another disk drive

Please, don’t hook up anything until you’ve completed the following
secuion!

%G commodore mmms ?Ilc:';‘gé’eydgilyslf — m-lﬁﬂ%

T I m—

DRIVE INDICATER (RED LED)

LIGHT ACTIVE
POWER INDICATER FLASH ERROR
! {GREEN LED)
Fig1. Front Panel LIGHT POWER ON

Fig2. Back Panel POWER SWITCH SERIAL BUS

ON

OFF
.

T— —
'AC INPUT \ FUSE/HOLDER

)|
/@8

Connection of Cables

Your fust step 1s to take the power cable and insert 1t into the back of the
disk drive (see figure 2 2). It won’t go in iIf you try to put in in upside down.
Once 1t's i the drive. plug the other end into the electrical outlet. if the disk
drive makes any sound at this time, please turn it off using the switch on the
back! Don't plug any other cables into the disk drive if the power is on.

Next. take the serial bus cable and attach 1t to either one of the serial bus
sockets in the rear of the drive. Turn off the computer, and plug the other end
of the cable into the back of the computer That's all there 1s to 1t!

If you have a printer, or any additional disk drives, attach the cables into
the second seral bus port (see figure 2.3). For directions on using multiple drives
at one time, read chapter 9.1f you are a first-time user with more than one drive,
start working with only one drnive unti you're comfortable with the unit.

JE oL e . - - e e
VIC 1541 i
Commodore 64 or VIC20 Single Drive

Personal Computer Floppy Disk

. Fig 3. Floppy Disk Hookup

Powering On

When you have all the devices hooked together, 1t’s time to start turning
on the power. It is important that you turn on the devices in the correct order.
The computer should always be turned on last. As long as the computer 1s the
last one to be turned on. every thing will be OK.

First, make sure that you've removed all diskettes from the disk drives
before powering on.

After all the other devices have been turned on, only then 1s 1t safe to turn
on the computer. All the other devices will go through their starting sequences
The printer’s motor goes on, with the print head moving halfway across the line
and back again. The 1541 disk drive will have 1ts red error light on, and then the
green drive light will blink. while your TV screen forms the starting picture.

Once all the lights have stopped flashing on the drive, 1t 1s safe to begin
working with it.

. >
B w
m
Py
" 3
» —
z
WRITE 3
PROTELT o
NOTCH b
E; | ; 3 <
WHEN COVERED, DISKETTE =
CONTENTS CANNOT BE s 309nN00
AL TERED
Fig.4. Position for Diskette Insertion
Insertion of Diskette

To open the door on the drive, simply press the door catch lightly, and the
door will pop open. If there 1s a diskette in the drive, it is ejected by a small
spnng. Take the diskette to be inserted, and place it in the drive face-up with the
large opening going in first and the write-protect notch to the left (covered with
tape 1n the demonstration disk) (see figure 2.4).

Press 1t 1n gently, and when the diskette 1s n all the way, you will feel a
chick and the diskette will not spring out. Close the drive door by pulling
downward until the latch clicks into place Now you are ready to begin working
with the diskette.

Remember to always remove the diskette before the drive 1s turned off or
on. Never remove the diskette when the green drive light 1s on! Data can be
destroyed by the drive at this time!

Using With a VIC 20 or Commodore 64

The 1541 Disk Drive can work with either the VIC 20 or Commodore 64

computers However, each computer has different requirements for speed of
incomimg data. Therefore, there 1s a software seitch for selecting which
computer's speed to use. The drive starts out ready for a Commodore 64. To
switch to VIC 20 speed, the following command must be sent after the drive 1s
started (powei-on or through software)

OPEN 15, 8, 15, “Ul-" CLOSE 15
To return the disk drive to Commodore 64 speed, use this command.
OPEN 15,8, 15, “Ul+”: CLOSE 15

More about using this type of command 1s m chapter 4. with a detailed
explanation of the U (user) commands in chapter 8.

3. USING PROGRAMS
LOADING PREPACKAGED PROGRAMS

For those of you interested in using only prepackaged programs available
on cartridges, cassette, or disk, here’s all you have to do-

Using your disk drive, carefully insert the preprogrammed disk so that the
label on the disk 1s facing up and 1s closest to you. Look for a little notch on the
disk (1t might be covered with a little piece of tape). If you’re inserting the disk
properly, the notch will be on the left side. Once the disk 1s inside, close the
protective gate by pushing in on the lever. Now type LOAD “PROGRAM
NAME", 8 and hit the key. The disk will make noise and your
screen will say

SEARCHING FOR PROGRAM NAME
LOADING

READY
[]

’

When the READY comes on and thel:l:‘ls on, just type RUN, and your
prepackaged software 15 ready to use.

LOAD

The BASIC commands used with programs on the disk drive are the same
as the commands used on the Commodore Datassette TM recorder. There are a
few extra commands available for use with disks, however. First of all, the
program name must be given with each command. On a Datassette, you could
omit the program name in order to just LOAD the firs program there. On disk,
since there are many different programs that are equally accessible, the program

9

name must be used to tell the disk drive what to do In addition, the disk drive’s
device number must be specified. If no device number s hsted, the computer
assumes the program 1s on tape.

FORMAT FOR THE LOAD COMMAND-
LOAD name$, device # , command#

The program name 1s a string, that 1s, either a name 1n quotes or the
contents of a given string variable Some vahd names are “HELLO”,
“PROGRAM #1”, AS, NAMES.

The device# 1s preset on the circuit board to be #8. If you have more than
one drive, see chapter 8 on how to change the device number. This book assumes
that you’re using device number 8 for the disk dnve

The command# 1s optional If not given, or zero, the program 15 LOADed
normally, that 15, beginning at the start of your available memory for BASIC
programs. If the number 1s 1, the program will be LOADed at exactly the same
memory locations from which it came. In the case of computers with different
meniory configurations, like VICs wath 5K, 8K, or more memory, the start of
BASIC memory 1s in different places. The command# O permits BASIC
programs to LOAD normally. Command# 1 is used mamly for machine
language. character sets, and other memory dependent functions.

EXAMPLES
LOAD “TEST”, 8

LOAD “Program #1”, 8 DEVICE#

LOAD A$,J “ K COMMAND #

LOAD "Mach Lang”, 8, 1

PROGRAM NAME

NOTE: You can use variables to represent device numbers, commands, and
strings, as long as you’ve previously defined them 1n your program.

Directory of Diskette

Your DatassetteT™ tape deck 15 a sequential device. It can only read from
the beginning of the tape to the end, without skipping around the tape and
without the capability of going backward or recording over old data.

Your disk drive 15 a random access device. The read/write head of the disk
can go to any spot on the disk and access a single block of data which holds up
to 256 bytes of information. There are a total of 683 blocks on a single diskette

Fortunately, you don’t really have to worry about individual blocks of
data. There 1s a program in the disk drive called the Disk Operating System, or
the DOS. This program keeps track of the blocks for you, It organizes them into
a Block Availability Map, or BAM, and a directory.

10

The Block Availability Map 1s simply a checklist of all 683 blocks on the
disk. It 1s stored in the middle of the diskette, halfway between the center hub
and the outer rim. Every time a program 1s SAVEd or a data file 1s CLOSEd, the
BAM 1s updated with the list of blocks used up.

The directory 1s a list of all programs and other files stored on the disk. It
1s physically located right next to the BAM. There are 144 entries available 1n
the directory, consisting of information like file name and type, a hist of blocks
used, and the starting block. The directory ts automatically updated every time a
program is SAVEd or a file 1s OPENed for writing Beware' the BAM sn’t
updated until the file 1s CLOSEd, even though the directory changes right away.
If a file 1sn’t CLOSEd properly, all data in that file will probably be lost.

The directory can be LOADed into your memory just like a BASIC
program. Place the diskette n the drive, and type the following command-

LOAD “$", 8

The computer responds with.

SEARCHING FOR §

FOUND §

LOADING

READY.

Now the directory ts in your computer’s memory Type LIST, and you'll
see the directory displayed on the screen. To print the directory on your printer,
type the following command lme (1n this example your printer 1s plugged mn as
device# 4)

OPEN4,8,4 CMD4 LIST

NOTE. When using CMD, the file must be closed using the command
PRINT# 4 CLOSE 4. See the VIC 1525/1515 printer manual for detailed
explanation

To read the directory without LOADing 1t into your memory, see the
section later in this chapter on the DOS Support Program. In addition, to
examine the directory from inside a BASIC program, see the section 1n chapter 5
that deals with the GET# statement.

Pattern Matching and Wild Cards

When using the tape deck, you can LOAD any program starting with
certain letters just by leaving off any following letters. Thus, the command

11

LOAD “T” will find the first program on the tape beginning with the letter T.
And LOAD “HELLO” will find the first program beginning with the letters
HELLO, like “HELLO THERE.”

When using the disk, this option s called pattern matching, and there is a
special character 1n the file name used to designate this. The asterisk (*)
character following any program name tells the dnive you want to find any
program starting with that name.

FORMAT FOR PATTERN MATCHING

Can Be A String
Variable Or The

LOAD name$ + “*”, 8 Name Inside Quotes

In other words, if you want to LOAD the first program on the disk
starting with the letter T, use the command LOAD ““T*”, 8.

If only the “* 1s used for the name, the last program accessed on the disk
is the one LOADed. If no program has yet been LOADed, the first one listed in
the directory 1s the one used.

You are probably familiar with the concept of wild cards in poker where
one card can replace any other card needed. On your 1541, the question mark
(7) can be used as a wild card on the disk. The program name on the disk is
compared to the name in the LOAD command, but any characters where there is
a question mark 1n the name aren’t checked.

For instance, when the command LOAD “TINT”, 8 is given, programs
that match include TINT, TENT, etc.

When LOADing the directory of the disk, pattern matching and wild cards
can be used to check for a list of specific programs. If you gave the command
LOAD “$0 TEST”, only the program TEST would appear in the directory (if
present on the disk). The command LOAD “$0 t*” would give you a directory
of all programs beginning with the letter T. And LOAD “$0'T?ST” would give
you all the programs with 4-letter names having the first letter of T and the third
and fourth letters ST. LOAD “$0-T?ST*” would give names of any length with
the correct first, third, and fourth letters.

SAVE

To SAVE a program to the diskette, all that 1s needed 1s to add the device
number after the program name. Just like the SAVE command for the tape
deck, the device number can be followed by a command number, to prevent the
automatic re-location on LOADing (see the section on the LOAD command,
above).

FORMAT FOR THE SAVE COMMAND
SAVE name$, device#, command#

12

See the LOAD command (page 10) for an explanation of the parameters
device # and command #.

When you tell the disk drive to SAVE a program, the DOS mwust take
seveial steps. First, 1t looks at the directory to see if a program with that name
alieady exists Next 1t checks to see that there 1s a directory entry available for
the name Then 1t checks the BAM to see 1if there are enough blocks in which to
stote the program. If everything 1s OK up to this point, the program 1s stored. If
not, the error light will flash.

SAVE and Replace

If a program already exists on the disk, 1t 1s often necessary to make a
change and re-SAVE 1t onto the disk. In this case, it would be inconvenient to
have to erase the old verston of the program and then SAVE 1t.

If the first characters of the program name are the “@” sign followed by a
0 and a colon (), the DOS knows to replace any old program that has that name
with the program that 1s now in the computer’s memory The drive checks the
directory to find the old program, then it marks that entry as deleted, and 1t
next creates a new entry with the same name. Finally, the program is stored
normally.
FORMAT FOR SAVE WITH REPLACE

SAVE “@0:”+ name$, device#, command #

For example, 1f a file was called TEST, the SAVE and replace command
would be SAVE “@0 TEST".8.

The reason for the 0. 1s to keep compatibility with other Commodore disk
drive units which have more than one drive built in. In that case, the number 0
or 1 1s used to specify which drive 1s being used.

VERIFY

The VERIFY command works to check the program currently in memory
against the program on disk You must include a device# with the VERIFY
command. The computer does a byte-by-byte comparison of the program,
including line lnks—which may be different for different memory configura-
tions. For instance, 1f a program was SAVEd to disk from a 5K VIC 20, and
re-LOADed on an 8K machine, 1t wouldn’t VERIFY properly because the links
pont to different memory locations.

FORMAT FOR VERIFY COMMAND-

VERIFY name$, device#

13

DOS Support Program

On your demonstration disk, there may be a program called DOS
SUPPORT. This program, also called a wedge, allows you to use many disk
commands more easily (different wedges are used for the VIC 20 and the
Commodore 64). Just LOAD the program and RUN 1t. It automatically sets
itself up and erases 1tself when 1t’s fimished. You’ll have a few hundred less by tes
to work with when this program 1s running, but you’ll also have a handy way to
send the disk commands.

As a resutt of the DOS Support, the “/” key now takes the place of the
LOAD command. Just hit the slash followed by the program name, and the
program 1s LOADed. When you use this method, you don’t need to use the
LOAD command or the comma 8

The“@” and ‘“>" keys are used to send commands to the disk drive. If you
type @$ (or >$), the directory of the disk 1s displayed on the screen, without
LOADing into your memory' These keys also take the place of the PRINT# (see
chapter 4) to send commands listed in the next chapter

To read the error channel of the disk (when the red error light 1s blinking),
just hit either the @ or the > and hit RETURN The complete error message 1s
displayed to you message number, text, and track and block numbers

4: DISK COMMANDS
OPEN and PRINT #

Up ‘til now, you have explored the sumple ways of dealing with the disk
drive. In order 10 communicate with the disk drive more fully, you have to
touch on the OPEN and PRINT# statements in BASIC (more details of these
commands are available 1n your VIC 20 or Commodore 64 User’s Guide or
Programmer's Reference Guide). You may be familiar with their use with data
files on cassette tape, where the OPEN statement creates the file and the
PRINT# statement fills the file wath data They can be used the same way with
the disk, as you will see 1n the next chapter But they can also be used toset up
a command channel. The command channel lets you exchange information
between the computer and the disk drive.

FORMAT FOR THE OPEN STATEMENT

OPEN file #, device #, channel #. text S

The file# can be any number from 1 to 255. This number 1s used
throughout the program to identify which file 1s being accessed. But numbers
greater than 127 should be avoided, because they cause the PRINT# statement
to generate a linefeed after the return character. These numbers are really meant
to be used with non-standard printers

14

The device # of the disk 1s usually 8.

The channel# can be any number from 2 to 15 These refer to a channel
used to communicate with the disk, and channels numbered O and 1 are reserved
for the operating system to use for LOADmng and SAVEing. Channels 2 through
14 can be used for data to files, and 15 1s the command channel.

The text$ 15 a string that 1s PRINTed to the file, as 1f with a PRINT#
statement This 1s handy for sending a single command to the channel,

EXAMPLES OF OPEN STATEMENTS

OPEN 15, 8, 15 DEVICE#

OPEN 2.8, 2 COMMAND CHANNEL#

OPEN A. B, C,Z$ COMMANDS (text$)

The PRINT# command works exactly like a PRINT statement, except
that the data goes to a device other than the screen, in this case to the disk drive
When used with a data channel, the PRINT # sends information nto a buffer m
the disk drive, from which 1t goes to the diskette. When PRINT# 1s used with
the command channel, 1t sends commands to the disk drive.

FORMAT FOR SENDING DISK COMMANDS

OPEN 15, 8, 15, command$
or
PRINT# 15, command$

NEW

This command 1s necessary when using a diskette for the first ume The
NEW command erases the entire diskette, 1t puts timing and block markers on
the diskette and creates the directory and BAM The NEW command can also be
used to clear out the directory of an already-formatted diskette This 15 faster
than re-formatting the whole disk.

FORMAT FOR THE NEW COMMAND TO FORMAT DISK
PRINT#15, “NEW¢
or abbreviated as
PRINT#15, “N@.name 1d”
FORMAT FOR THE NEW COMMAND TO CLEAR DIRECTORY:
PRINT# 15, “N§ name”
The name goes i the directory as the name of the entire disk. This only

appears when the directory 1s listed. The ID code 1s any 2 characters, and they
are placed not only on the directory but on every block throughout the diskette.

15

That way, 1f you carelessly replace diskettes while wnting data, the dnive wall
know by checking the 1D that something 18 wrong.

cory

This command allows you to make a copy of any program or file on the
disk drive. It won’t copy from one drnive 1o a different one (except in the case of
dual drives like the 4040), but 1t can duplicate a program under another name on
the drive.

FORMAT FOR THE COPY COMMAND-

PRINT# [5, “COPY§:newfile=p Gldfile™ { DRIVE#)

or abbreviated as
PRINT# 15, “c{newfile=@: oldfile”

The COPY command can also be used to combine two through four files
on the disk.

FORMAT FOR COPY TO COMBINE FILES:
PRINT#15, “Cé‘newﬁle=¢ oldfile1,0 oldfile2,0 oldfile3,0 oldfiled”
EXAMPLES OF COPY COMMAND

PRINT# 15, “C#-BACKUP=0. ORIGINAL”
PRINT#15, “C'MASTERFILE=g.NAME,0. ADDRESS,§.PHONES”

RENAME

This command allows you to change the name of a file once 1t 15 1n the
disk directory. This is a fast operation, since only the name n the directory must
be changed.
FORMAT FOR RENAME COMMAND:

PRINT#15, “RENAME¢:m]dna
or abbreviated as

PRINT# 15, “Rf:newname=oldname”
EXAMPLE OF RENAME COMMAND:

PRINT# 15, “RO.MYRA=MYRON”

The RENAME command will not work on any files that are currently
OPEN.

16

SCRATCH

This command allows you to erase unwanted files and programs from the
disk, which then makes the blocks available for new information You can erase
programs one at a time or in groups by using pattern matching and/or wild cards.

FORMAT FOR SCRATCH COMMAND

PRINT# 15, “SCRATCH¢
or abbreviated as

PRINT# 15, “S¢ name"’

If you check the error channel after a scratch operation (see below), the
number usually reserved for the track number now tells you how many files
were scratched. For exampte, 1f your directory contams the programs KNOW
and GNAW, and you use the command PRINT# 15, “S0.7NW”, you will
scratch both programs. If the directory contains TEST, TRAIN, TRUCK, and
TAIL, and you command the disk to PRINT# 15, “SO.T*", you will erase all
four of these programs.

INITIALIZE

At times, an error condition on the disk will prevent you from performing
some operation you want to do The INITIALIZE command returns the disk
drive to the same state as when powered up. You must be careful to re-match
the drive to the computer (see chapter 2).

FORMAT FOR INITIALIZE COMMAND

PRINT# 15, “INITIALIZE”
or abbreviated as
PRINT# 15, “1™

VALIDATE

After a diskette has been n use for some time. the directory can become
disorgamized. When programs have been repeatedly SAVEd and SCRATCHed,
they may leave numerous small gaps on the disk, a block here and a few blocks
there. These blocks never get used because they are too small to be useful The
VALIDATE command will go m and re-organize your diskette so that you can
get the most from the available space.

Also, there may be data files that were OPENed but never properly
CLOSEd. This command will collect all blocks taken by such files and make
them available to the drive, since the files are unusable at that point,

There 15 a danger i using this command. When using random files (see

chapter 6), blocks allocated will be de-allocated by this command. Therefore,
this command should never be used with a diskette that uses random files.

17

FORMAT FOR VALIDATE COMMAND*

PRINT# 15, “VALIDATE”
or abbreviated as
PRINT# 15, “V”

DUPLICATE

This command 1s a hangover from the operating systems that were
contained on the dual drives like the 4040. It was used to copy entire diskettes
from one drive to another, but has no function on a single disk drive.

Reading the Error Channel

Without the DOS Support Program, there 1s no way to read the disk error
channel without a program, sice you need to use the INPUT# command which
won't work outside a program. Here 1s a ssmple BASIC routine to read the error

channel ~
ERROR#
ERROR NAME
20 INPUT# 15, AS, BS, C$, DS m

30 PRINT AS$, BS, C$, D$

Whenever you perform an INPUT# operation from the command channel,
you read up to 4 variables that describe the error condition. The first, third, and
fourth variables come n as numbers, and can be INPUT into numeric vanables 1f
you like. The first variable describes the error #, where 0 is no error. The second
variable 1s the error description The third variable 1s the track number on which
the error occurred, and the fourth and final 1s the block number mside that
track. (A block 1s also known as a sector)

10 OPEN 15, 8, 15

Errors on track 18 have to do with the BAM and directory. For example, a
READ ERROR on track 18 block 0 may indicate that the disk was never
formatted.

CLOSE
It 1s extremely important that you properly CLOSE files once you are
finished using them. Closing the file causes the DOS to properly allocate blocks

in the BAM and to finish the entry in the directory. If you don’t CLOSE the file,
all your data will be lost!

FORMAT FOR CLOSE STATEMENT.
CLOSE file #

You should also be careful not to CLOSE the error channel (channel# 15)
18

before CLOSEmg your data channels. The error channel should be OPENed first
and CLOSEd last of all your files! That will keep your programs out of trouble.

If you close the error channel while other files are OPEN, the disk drive
will CLOSE them for you. but BASIC will still think they are open (unless you
CLOSE them properly), and let you to try to write to them.

NOTE: If your BASIC program leads you into an error condition, all files

are CLOSEd 1n BASIC, without CLOSEing them on your disk drive! This

1s a very dangerous conditzon. You should mmediately type the statement
OPEN 15, 8, 15, “I" This will re-inititalize your drive and make all your files
safe.

5. SEQUENTIAL FILES
OPEN

Sequential files on the disk drive work exactly like they do on cassette
tape, only much faster. They are limited by their sequential nature, which means
they must be read from beginning to end. Data 1s transferred byte by byte,
through a buffer, onto the magnetic media. To the disk drive all files are created
equal. That 1s, sequential files, program files, and user files all work the same on
the disk. Only program files can be LOADed, but that’s really the only
difference. Even the directory works like this, except that 1t 1s read-only. The
only difference 1s with relative files.

FORMAT FOR OPENING A SEQUENTIAL FILE
OPEN file #, device #, channel #, “0 name,type,direction”

The file number s the same as n all your other applications of the OPEN
statement, and it 1s used throughout the program to refer to this particular file.
The device # 1s usually 8. The channel# 1s a data channel, number 2 through 14.
It 1s convenient to use the same number for both the channel# and file#, to
keep them straight The name 1s the file name (no wild cards or pattern matching
if you’re creating a write file) The type can be any of the ones from the chart
below, at least the first letter of each type. The direction must be READ or
WRITE, or at least the first letter of each.

FILE TYPE MEANING
PRG Program
SEQ Sequential
USR User
REL Relative (not implemented in BASIC 2.0)

19

EXAMPLES OF OPENING SEQUENTIAL FILES

OPEN 2, 8, 2[“0: DATA, S, W”

OPEN 8, 8, 8,0 Program

OPEN A, B,C,“0 > + A8 + “U, W READ/WRITE

If the file already exists, you can use the replace option in the OPEN
statement, similar to the SAVE-and-replace described in chapter 3. Simply add
the @0: before the file’s name 1n the OPEN statement.

EXAMPLE OF SEQUENTIAL FILE WITH REPLACE OPTION-
OPEN 2, 8, 2, “@0-DATA,S,W”
PRINT# and INPUT #

The PRINT# command works exactly like the PRINT statement, except
that output s re-directed to the disk drive. The reason for the special emphasis
on the word exactly 1s that all the formatting capabilities of the PRINT
statement, as applies to punctuation and data types, applies here too. It just
means that you have to be careful when putting data into your files.

FORMAT FOR WRITING TO FILE WITH PRINT#
PRINT# file #, data list
The file # 15 the one from the OPEN statement when the file was created

The data list is the same as the regular PRINT statement—a hist of variables
and/or text inside quote marks. However, you must be especially careful when
writing data that 1t 1s as easy as possible to read back again later.

When using the PRINT# statement, 1f you use commas (,) to separate
items on the line, the 1tems will be separated by some blank spaces, as if it were
being formatted for the screen. Semicolons (;) don’t result n any extra spaces.

In order to more fully understand what’s happening, here is a diagram of a
sequential file created by the statement OPEN 5, 8, 5, “0-TEST,S,W™.

P2 N O T O
charrll2l314|5l6|7l8|9‘10‘11,12I13ll4|15|
The eof stands for the end-of-file marker. String data entenng the file goes
in byte by byte, including spaces.

For instance, let’'s set up some vanables with the statement A$=
“HELLO”; B$= “ALL” C$= “BYE”. Here 1s a picture of a file after the

20

statement PRINT# 5, AS; BS, CS.

|olefolilolalc]
123456]7

cha [1] 2]3[afs]e]7]

CR stands for the CHRS code of 13, the carriage return, which 1s PRINTed
at the end of every PRINT or PRINT# statement unless there 1s a comma or
sermcolon at the end of the line.

L
8

NOTE: Do not leave a space between PRINT and #, and do not try to
abbreviate the command as ?# See the appendixes 1n the user manual for
the correct abbreviation.

FORMAT FOR INPUT# STATEMENT
INPUT# file #, vanable hist

When using the INPUT# to read this data i, there 1s no way to tell that
1t’s not supposed to be one long string. You need something in the file to actas a
separator Characters to use as separators include the CR, a comma or a
semicolon. The CR can be added easily by just using one vanable per line on the
PRINT# statement, and the system puts one there automatically. The statement
PRINT# 5, A$ PRINT# 5, B$: PRINT# 5, C$ puts a CR after every vanable
being written, providing the proper separation for a statement like INPUT#S,
AS, BS, CS. Or else a hine like Z3= “," PRINT# 5, A$ Z$ BS Z$ C$ will do the
job as well, and 1n less space. The file after that line looks like this.

lulefifelof. [alc]
char|1|2|3|4|5|6|7|8|

Putting commas between variables results in lots of extra space on the disk
being used. A statement like PRINT# 5, A$, B$ makes a file that looks like.

ollllll Illlcaleofl
5|6|7|8|9| 2|3]4... 23|24|

LI, |B|YlE|CR|eof|
9|1o|11|12|13||4|15|

lulefc]|e]
char|l|2l3|4|

You can see that much of the space 1n the file 1s wasted.

The moral of all this 1s take care when using PRINT# so your data will be
in order tor reading back in.

Numeric data wntten in the file takes the form of a string, as if the STR$
function had been performed on 1t before writing 1t out. The first character will
be a blank space if the number 1s positive, and a minus sign (-) if the number is
negative. Then comes the number,and the last character 1s the cursor nght
character. This format provides enough information for the INPUT# statement
to read them in as separate numbers if several are wrntten with no other special
separators. It 1s somewhat wasteful of space, since there can be two unused

21

characters 1f the numbers are positive,

Here 1s a picture of the file after the statement PRINT# 5, 1; 3, 5;7 18
performed.

| [t]=] [s]o] |s|ol | 7]—]cr|eo]
charlll | I4| |6l7| | |10|11—|12113|14|15

Appendix B contains a program demonstrating the use of a sequential disk

file.
GET#
The GET# retrieves data from the disk, one character at a time.
FORMAT FOR THE GET# STATEMENT
GET# file #, vanable hist
Data comes in byte by byte, including the CR, comma, and other
separating characters. It 18 much safer to use string variables when using the

GET# statement. You will get a BASIC error message if string data is received
where a number was requested, but not vice-versa

EXAMPLES OF GET# STATEMENT:

GET# 5, AS
GET# A, BS, C$, D$ You can get more than 1 character at a time
GETS 5. A

The GET# statement 1s extremely useful when examining files with
unknown contents, like a file that may have been damaged by an experimental
program. It 1s safer than INPUT# because there 1s a limit to the number of
characters allowed between separators of INPUT variables. With GET#, you
recelve every character, and you can examine separators as well as other data.

Here 15 a sample program that will allow you to examine any file on the
disk

10 INPUT “FILE NAME”, F$

20 INPUT “FILE TYPE™:T$

30 T$=LEFT$(T$,1)

40IF T$ <>“S” THENIF T$ <> “P” THEN IF T§ <> “U” THEN 20
45 OPEN 15,8, 15

SOOPENS, 8,5,“0:” + F§+ “’+ T§+ “R”

60 GOSUB 200

22

70 GET#5, A$

80 IF ST <> 0 THEN PRINT ST: STOP

90 PRINT ASC(A$+CHRS(0));
100 GOTO 70
200 INPUT# 15, AS, BS, C$, D$
210 IF VAL (A$) > 0 THEN PRINT AS$,B$,C$;D$.STOP
220 RETURN

In Case Of Null
Character Being
Read In — Causes
Error With ASC

Function Otherwise!

Reading the Directory

The directory of the diskette may be read just hke a sequential file. Just
use $ for the file name, and OPEN 5, 8, 5, “$”’. Now the GET# statement works
to examine the directory. The format here 1s identical to the format of a
program file the file sizes are the line numbers, and names are stored as
characters within quote marks.

Here’s a program that lets you read the directory of the diskette.

10 OPEN1,8,2,$
20 GET#1,A3.A$.A$.A%
30 T$(0) = “Del”. T$(1) = “SEQ™" T$(2) = “PRG™ T$(3) = “USR™:T$(4) = “REL”

40 J=17: GOSUBS500 e\a
60 J=2

70 GOSUBS500

80 13=BS$

100 GOSUB500

110 0$=BS$

120 FORL=1TO73
130 GET#1,AS,A$,A$

140 NEXT

150 GET#1,A3,A$,A5,A3,A3

160 PRINTCHR$(147) “Disk name: “N§,“ID “I$,“OS. “O$
161 PRINT“Length”,“Type”,“Name”

165 FORP=1TO8

170 GET#1,T$,A$,AS

175 IFSTTHENCLOSEL.END

180 IFT$="“THENT$=CHR$(128)

190J=15 < (FILENAME)

200 GOSUBS00

210 N$=B$
220 GET#1,A$,AS,A$,AS,AS,A$,A8,AS,A8,AS,L8 HS

225 L=ASC(LS+CHRS(0))+256* ASC(HS+CHRS(0)-1 FL=0THEN250

230 PRINTL, T$(ASC(T$)—128),N$

250 IFP < STHENGET#1,A$,A$

260 NEXTP. GOTO165

23

500 B$=’7’!

510 FORL=0TOJ
520 GET#1,A$ STRING
530 IFA$ <> CHR$(96)THENIFA$ < > CHR$(160)THENB$=B$+A

oI %96 b §160) 3B3+A3\ sUBROUTINE

550 RETURN

Table 5.1: 1540/1541 BAM FORMAT

Track 18, Sector 0.

BYTE | CONTENTS DEFINITION

0.1 18,01 Track and sector of first directory block

2 65 ASCH character A indicating 4040 format.
3 0 Null flag for future DOS use.

4-143 *Bit map of available blocks for trace 1--35.

*] = available block
0 = block not available
(each bit represents one block)

Table 5.2: 1540/1541 DIRECTORY HEADER

Track 18, Sector 0.
BYTE | CONTENTS DEFINITION
144—161 Disk name padded with shifted spaces.
162—163 Disk ID.
164 160 Shifted space.
165,166 50,65 ASCII representation for 2A which is DOS version
and format type.
166—167 160 Shifted spaces.
171255 0 Nulls, not used.
Note. ASCII characters may appear 1n locations 180 thru 191 on some diskettes.

24

Table 5.3: DIRECTORY FORMAT

Track 18, Sector 1 for 4040
Track 39, Sector 1 for 8050

BYTE DEFINITION
0.1 Track and sector of next directory block.
2-31 *File entry 1
34-63 *File entry 2
66—95 *File entry 3
98—127 *File entry 4
130-159 *File entry 5
162191 *File entry 6
194-223 *File entry 7
226-255 *File entry 8
*STRUCTURE OF SINGLE DIRECTORY ENTRY
BYTE | CONTENTS DEFINITION
0 128+type | File type OR’ed with $80 to indicate properly closed
leePES 0= DELeted
1 = SEQential
2 = PROGram
3=USER
4 = RELative
1,2 Track and sector of 1st data block.
3-18 File name padded with shifted spaces.
19,20 Relative file only track and sector for first side sector
block.
21 Relative file only Record size.
22-25 Unused.
26,27 Track and sector of replacement file when OPEN@ is in
effect.
28,29 Number of blocks 1n file: low byte, high byte.

25

Table 5.4: SEQUENTIAL FORMAT

BYTE DEFINITION
0,1 Track and sector of next sequential data block.
2-256 254 bytes of data with carniage returns as record terminators.

Table 5.5: PROGRAM FILE FORMAT

BYTE DEFINITION

0,1 Track and sector of next block in program file.

2-256 254 bytes of program info stored in CBM memory format (with
key words tokenized) End of file is marked by three zero bytes.

6. RANDOM FILES

Sequential files are fine when you're just working with a continuous
stream of data, but some jobs require more than that. For example, with a large
mailing list, you would not want to have to scan through the entire list to find a
person’s record. For this you need some kind of random access method, some
way to get to any record inside a file without having to read through the entire
file first.

There are actually two different types of random access files on the
Commodore disk drive. The relative files discussed 1n the next chapter are more
convenient for data handling operations, although the random files 1n this
chapter have uses of their own, especially when working with machine language.

Random files on the Commodore disk drive reach the individual 256-byte
blocks of data stored on the disk. As was mentioned 1n the first chapter, there
are a total of 683 blocks on the diskette, of which 664 are free on a blank
diskette. Each block of data really means 1 Track and sector of the same name.

The diskette is divided into tracks, which are laid out as concentric circles
on the surface of the diskette. There are 35 different tracks, starting with track 1
at the outside of the diskette to track 35 at the center. Track 18 1s used for the
directory, and the DOS fills up the diskette from the center outward

Each track 1s subdivided 1nto sectors. Because there 1s more room on the
outer tracks, there are more sectors there The outer tracks contain 21 sectors
each, while the inner ones only have 17 blocks each. The table below shows the
number of sectors per track.

26

Table 6.1: TRACK AND BLOCK FORMAT

TRACK NUMBER SECTOR RANGE TOTAL SECTORS

1to 17 0to 20 21
18 to 24 0to 18 19
25t0 30 Oto 17 18
31t035 Oto 16 17

The DOS contains commands for reading and writing directly to any track
and sector on the diskette. There are also commands for checking to see which
blocks (tracks & sectors) are available. and for marking off used blocks

These commands are transmitied through the command channel
(channel# 15), and tell the disk what to do with the data The data must be read
later through one of the open data channels.

Opening a Data Channel for Random Access

When working with random access files, you need to have 2 channels open
to the disk one for the commands, and the other for the data. The command
channel 1s OPENed to channel 15, just hke other disk commands you've

encountered so far. The data channel for random access files 1s OPENed by
selecting the pound sign (#) as the file name.

FORMAT FOR OPEN STATEMENT FOR RANDOM ACCESS DATA
OPEN file #, device#, channel #, “#”
or optionally

OPEN file #, device#, channel #, “# buffer#”

EXAMPLES OF OPENING RANDOM ACCESS DATA CHANNEL

OPEN 5,8, 5, “#" DON'T CARE WHICH BUFFER
OPEN A, B. C, “#27 PICK BUFFER #2

BLOCK-READ
FORMAT FOR BLOCK-READ COMMAND-
PRINT# file #, “BLOCK-READ ™ channel, drive, track, block

or abbreviated as
PRINT# file#, “B-R " channel, di1ve, track, block

This command will move one block of data from the diskette into the
selected channel. Once this operation has been performed, the INPUT# and
GET# statements can read the information.

27

SAMPLE PROGRAM TO READ BLOCK 2 FROM TRACK 18- (stores contents

n BS)
10 OPEN 15, 8, 15 (reee)
20 0PEN 5, 8, 5, “#” /.
30PRINT# 15,“BR 5,0, 18,2 - BLOCK

50 FOR L=0 TO 255
60 GET# 5, AS
70 [F ST=0 THEN B$= B$+ A§ NEXTL

80 PRINT “FINISHED” COLLECT ENTIRE BLOCK,
90 CLOSE 5. CLOSE 15 BYTE BY BYTE

BLOCK-WRITE

The BLOCK-WRITE command 1s the exact opposite of the BLOCK-READ
command. First you must fill up a data buffer with your information, then you
write that buffer to the correct location on the disk.

FORMAT FOR BLOCK-WRITE COMMAND

PRINT# file#, “BLOCK-WRITE ” drive, channel, track, block
or abbreviated as
PRINT# file, “B-W ” drive, channel. track, block

When the data 1s being put into the buffer, a pointer in the DOS keeps
track of how many characters there are. When you perform the BLOCK-WRITE
operation, that pomter is recorded on the disk. That is the reason for the ST
check 1n line 70 of the program above: the ST will become non-zero when you
try to read past the end-of-file marker within the record.

SAMPLE PROGRAM TO WRITE DATA ON TRACK 1, SECTOR 1:

10 OPEN 15, 8,15

20 OPEN 5, 8, 5, “#”

30FOR L=1to 50

40 PRINT#5, “TEST”

50 NEXT

60 PRINT# 15,“B-W:” 5,0, 1, 1
70 CLOSE 5. CLOSE 15

28

BLOCK-ALLOCATE

In order to safely use random files along with regular files, your programs
must check the BAM to find available blocks, and change the BAM to reflect
that you've used them. Once you update the BAM, your random files wili be
safe—at least unless you perform the VALIDATE command (see chapter 3).

FORMAT FOR THE BLOCK-ALLOCATE COMMAND.
PRINT# file#, “BLOCK-ALLOCATE " dnive, track, block

How do you know which blocks are available to use? If you try a block
that 1sn’t available, the DOS will set the error message to number 65, NO
BLOCK, and set the track and block numbers to the next available track and
block number. Therefore, any time you attempt to write a block to the disk,
you must first try to allocate that block. If that block 1sn’t available, read the
next block available from the error channel and then allocate that block.

EXAMPLE OF PROCEDURE TO ALLOCATE BLOCK.

10 OPEN 15, 8,15

20 OPEN 5.8, 5, “# (DRIVE)

30 PRINT# 5, “DATA™ (TRAGO)
40T=1 $=1
50 PRINT#15, “B-A.” 0, T, s

60 INPUT#15, A,BS,C,D
70 IF A=65 THEN T=C S=D GOTO 50
80 PRINT#15,“BW 5,0, T, S

BLOCK-FREE

The BLOCK-FREE command 1s the opposite of BLOCK-ALLOCATE, 1n
that 1t frees a block that you don’t want to use anymore for use by the system.
It 15 vaguely similar to the SCRATCH command for files, since 1t doesn’t really
erase any data from the disk—just frees the entry, n this case just in the BAM,

FORMAT FOR BLOCK-FREE COMMAND
PRINT # file#, “BLOCK-FREE ™" dnive, track, block

or abbreviated as
PRINT# file #, “B-F'” drive, track, block

Using Random Files

The only problem with what you’ve learned about random files so far 1s

29

that you have no way of keeping track of which blocks on the disk you used.
After all, you can’t tell one used block on the BAM from another. You can't tell
whether it contains your random file, just part of a program, or even sequential
or relative files.

To keep track, the most common method s to build up a sequential file to
go with each random file. Use this file to keep just a list of record, track, and
block locations. This means that there are 3 channels open to the disk for each
random file: one for the command channel, one for the random data, and the
other for the sequential data. This also means that there are 2 buffers that you're
filling up at the same time!

SAMPLE PROGRAM WRITING 10 RANDOM-ACCESS BLOCKS WITH
SEQUENTIAL FILE:
10 OPEN 15, 8, 15
200PENS5,8,5,“#
30 OPEN4, 8,4, “@0 KEYS,S,W”
40 A$= “RECORD CONTENTS #”
SO0 FORR=1TO 10
70 PRINT#5, A$ “” R
90 T=1.B=1
100 PRINT# 15, “B-A:” 0, T, B
110 INPUT# 15, A,BS$,C,D
120 IF A=65 THEN T=C:B =D- GOTO 100
130 PRINT# 15, “B-W-" 5,0, T,B
140 PRINT#4, T B
150 NEXT R
160 CLOSE 4: CLOSE 5: CLOSE 15

SAMPLE PROGRAM READING BACK 10 RANDOM-ACCESS BLOCKS WITH
SEQUENTIAL FILE:

IO OPEN 15, 8, 15
200PENS, 8,5, "#”
30 OPEN4, 8, 4, “KEYS,S,R”

40 FOR R=1 TO 10 :
50 INPUT#4, T, S ;";eiztff’gs:éa‘:k
60 PRINT# 15, “B-R:” 5,0, T, S

30

80 INPUT#5S, AS$, X
90 IF A$ <> “Record Contents #” OR X <> R THEN STOP
110 PRINT#15,“B-F " 0, T, AN

120 NEXT R Checks To Make
130 CLOSE 4 CLOSE 5 Sure Data Is OK

140 PRINT# 15, *“SO.KEYS”
150 CLOSE 15

BUFFER-POINTER

The buffer pointer keeps track of where the last piece of data was written
It also 1s the pointer for where the next piece of data s to be read. By changing
the buffer pointer’s location within the buffer, you can get random access to the
individual bytes within a block This way, you can subdivide each block into
records.

For example, let’s take a hypothetical mailing list. The information such as
name, address, etc., will take up a total of 64 characters maximum. We could
divide each block of the random access file into 4 separate records, and by
knowing the track, sector, and record numbers, we can access that individual
record.

FORMAT FOR BUFFER-POINTER COMMAND*

PRINT# file#, “BUFFER-POINTER * channel, location
or abbreviated as
PRINT# file #, ““B-P.” channel, location

EXAMPLE OF SETTING POINTER TO 64TH CHARACTER OF BUFFER
PRINT# 15, “B-P-”" 5, 64

Here are versions of the random access wwiting and reading programs
shown above, modified to work with records within blocks.

SAMPLE PROGRAM WRITING 10 RANDOM-ACCESS BLOCKS WITH 4
RECORDS EACH.

10 OPEN 15, 8, 15

200PEN S, 8,5, “#

30 OPEN 4, 8, 4, “KEYS,S,W”

40 A3=“RECORD CONTENTS #”

50 FORR=1TO 10

60 FORL=1TO 4

31

TOPRINT# 15, “B-P " 5. (L-1)* 64 Position to 0, 64, 128, or 192

S8OPRINT#5,A8 “" L
90NEXTL

100 T=1 B=1

110 PRINT#15,“B-A” O, T,B
120 INPUT# 15, A, BS$,C,D
1301F A=65 THEN T=C B=D GOTO 110
140 PRINT# 15, “B-W.” 5,0, T;B

150 PRINT#4,T ;B

160 NEXT R

170 CLOSE 4- CLOSE 5 CLOSE 15

Fmd Available
Track & Sector

SAMPLE PROGRAM READING BACK 10 RANDOM-ACCESS BLOCKS WITH
4 RECORDS EACH.
10 OPEN 15.8, 15
200PEN S, 8, 5, “#
30 OPEN 4, 8,4, “KEYS,S,R”
40 FORR=1 TO 10
50 INPUT#4,T,S
60 PRINT# I5,“B-R ” 5,0, T; S
70 FORL=1TO 4
80 PRINT# 15, “B-P"’ 5, (L-1)* 64
85 INPUT# 5, AS, X
90 IF A$ <> “Record Contents #° OR X=L THEN STOP
100NEXT L
110 PRINT# 15, “B-F-” 0; T; S
120 NEXT R
130 CLOSE 4 CLOSE 5
140 PRINT# 15, “SO:KEYS™
150 CLOSE 15
USERI1 and USER2
The user commands are generally designed to work with machine language
(see the next chapter for more on this). The USER1 and USER2 commands are
special versions of the BLOCK-READ and BLOCK-WRITE commands, but .

32

with an 1mportant difference the way USER! and USER2 work with the
buffer-pointer

The BLOCK-READ command reads up to 256 characters, but stops
reading when the buffer-pointer stored with the block says that block is finished.
The USER! command performs the BLOCK-READ operation, but first forces
the pointer to 255 1n order to read the entire block of data from the disk.

FORMAT FOR USERI COMMAND

PRINT# file#, “Ul""" channel, drive, track, block
or
PRINT# file#, “UA ” channel, dnive, track, block

There 15 no difference between the Ul and UA designations for this
command.

The BLOCK-WRITE command writes the contents of the buffer to the
block on the disk along with the value of the buffer-pointer. The USER2
command writes the buffer without disturbing the buffer-pointer value already
stored on that block of the diskette. This 1s useful when a block 1s to be read 1n
with BLOCK-READ, updated through the BUFFER-POINTER and PRINT#
statements, and then written back to the diskette with USER2

FORMAT FOR USER2 COMMAND

PRINT# file#, “U2 channel, dnive, track, block
or
PRINT# file #, ““UB " channel, drive, track, block

For a more complex sample program, see appendix B

7. RELATIVE FILES

Relative files allow you to easily zero 1n on exactly the piece of data that
you want from the file. It 1s more convenient for data handhing because 1t allows
you to structure your files into records, and 1nto fields within those records.

The DOS keeps track of the tracks and sectors used, and even allows
records to overlap from one block to the next. It 1s able to do this because 1t
establishes side sectors, a series of pomnters for the beginning of each record.
Each side sector can point to up to 120 records, and there may be 6 side sectors
in a file. There can be up to 720 records in a file, and each record can be up to
254 characters, so the file could be as large as the entire diskette.

33

Creating a Relative File

When a relative file 1s first to be used, the OPEN statement will create that
file, after that, that same file will be used. The replace option (with the @ sign)
does not erase and re-create the file. The file can be expanded, read, and wnitten
into.

FORMAT FOR THE OPEN STATEMENT TO CREATE RELATIVE FILE.

OPEN file #, device #, channel#, “name,L,” + CHRS$(record length)
EXAMPLES OF OPEN STATEMENT CREATING RELATIVE FILES.

OPEN 2, 8, 2, “FILE,L,"“+ CHR$(100)

OPENF, 8, F, A$+ “,L,“+ CHR$(Q) Record Length

OPEN A, B, C, “TEST,L,“+ CHR$(33)

Table 7.1 RELATIVE FILE FORMAT

DATA BLOCK
BYTE DEFINITION
0,1 Track and sector of next data block.
2-256 254 bytes of data. Empty records contain FF (all binary ones)
in the first byte followed by 00 (binary all zeros) to the end of
the record Partially filled records are padded with nulls (00).
SIDE SECTOR BLOCK
BYTE) DEFINITION
0,1 Track and sector of next side sector block.
2 Side sector number. (0-5)
3 Record length.
4,5 Track and sector of first side sector (number Q)
6,7 Track and sector of second side sector {(number 1)
8,9 Track and sector of third side sector (number 2)
10,11 Track and sector of fourth side sector (number 3)
12,13 Track and sector of fifth side sector (number 4)
14,15 Track and sector of sicth side sector (number 5)
16—256 | Track and sector pointers to 120 data blocks.

34

Upon execution, the DOS furst checks to see if the file exists. If 1t does,
then nothing happens. The only way to erase an old relative file 1s by using the
SCRATCH comiand (see chapter 4), but not by using the replace option.

Using Relative Files

In order to OPEN a refative file once 1t exists, the format 1s sumpler.
FORMAT FOR OPENING AN EXISTING RELATIVE FILE

OPEN file#, device#, channel#, “name”

In this case, the DOS automatically knows that 1t is a relative file. This
syntax, and the one shown in the above section, both allow either reading or

writing to the file.

In order to read or write, you must, before any operation, position the file
pomter to the correct record position.

FORMAT FOR POSITION COMMAND
PRINT# file #, “P”" CHRS(channel#) CHRS(rec# 10) CHRS (rec# hi)

or optionally as
PRINT# file #, “P” CHR3${channel#) CHR$(rec#lo) CHR$(rec #hi) CHR$(positr

EXAMPLES OF POSITION COMMAND:-

PRINT# 15, “P” CHR3$(2){CHR$(1) CHR$(0) Record#
PRINT# 15, “P” CHR$(CH))CHR$(R1) CHRS$(R2)

Position
PRINT# 15, “P” CHR$(4) CHR$(R1) CHR$(R2) CHR$(P)

The 2-byte format for the record number 1s needed because one byte can
only hold 256 different numbers, and we can have over 700 records in the file.
The rec# lo contains the least significant part of the address, and the rec# hi s
the most significant part. This could be translated to the actual record number
by the formula REC# = REC Hl1 * 256 + REC LO

Let’s assume we have a mailing list The list consists of 8 pieces of data,
according to this chart

Fteld Name Length

state 2
first name 12 21p code 9
last name 15 phone number 10
address line 1 20
address line 2 2 T TTTTTTT
city 12 TOTAL 100

35

This 1s how the record length 1s determined. We would probably want to
allow an extra character in length for each field, to allow for separations,
otherwise the INPUT# command would pick up a much longer prece of the file
than needed, just like 1n sequential files. Therefore, we’ll set up a file with a
length of 108 characters per record In the first record, we’ll put the number 1,
representing the largest record# used so far Here 1s the program as described so
far

100PEN 1, 8,15
20 OPEN 2, 8, 3, “0 MAILING LIST,L,"+CHRS$(108)
30 GOSUB 900
40 PRINT# 1, “p” CHR$(3) (CHR$(1) CHR$(0) CHRS(1)
50 GOSUB 900
60 IF E=50 THEN PRINT#2.1 GOTO 40
70 INPUT#2, X
300 STOP
900 INPUT# 1,E, BS,C, D
910 IF (E=50) OR(E <20) THEN RETURN
920 PRINT A, B; C.D STOP. RETURN

Error #50 which 1s checked 1n line 60 of the program 1s the RECORD
NOT PRESENT error, which means that the record hadn’t been created yet.
Writing into the record will solve the proglem. This error condition must be
watched carefully within your programs

So far, all 1t does 1s create the file and the first record, but doesn’t actually

put any data in 1t. Below 15 a greatly expanded version of the program, 10
actually allow you to work with a mailing list where the records are coded by
numbers

MAILING LIST READ AND WRITE PROGRAM

5 A(1)=12 A2)=15 A(3) =20 A(4)=20 A(5)=12 A(6) =2 A(7)=9 A(8)=10
10 OPEN1,8,15 OPEN2,8,3,"0 Mailing List,1,“+CHR$(108) GOSUB900
20 PRINT#1,“p"CHR$(3)CHRS$(1) CHR$(0) CHRS$(1) INPUT#2 X
30 INPUT*Read, Wnite, or End” J$ 1FJ$="¢”THENCLOSE2 CLOSE1 END
40 [FJ$=“w"THEN200
50 PRINT INPUT"‘Record #* R 1FR <QORR >XTHENS0
60 IFR<2THEN30 --—
* 70 RI=R R2=0 IFR1 >\256ﬁHENR2=lNT(R1/256) R1=RI-256*R2
80 RESTORE DATI,FIRST NAME,14,LAST NAME 30, ADDRESSI ,51,ADDRESS2
90 DATA72,CITY,85,STATE.88,ZIP,98 PHONE#
100 FORL=1TO8 READA,AS PRINT#1.“p”"CHR$(13) CHR$(RI) CHR$(R2) CHR$(A) GOSUB90C
110 ONA/50GOTOS0 INPUT#2,2$ PRINTAS,Z$ NEXT GOTOS50
200 PRINT INPUT Record # ,R 1IFR <0ORR > 5000THEN200
210 [IFR<2THEN30
215 1IFR>XTHENR=X+1 PRINT PRINT“Record # “R
220 RI=R R2=0 [FR1>256THENR2=INT(R1/256) R1=R] — 256*R2
230 RESTORE FORL=1TO8 READA,AS PRINT#1, “p"CHR$(3) CHR$(R1) CHR$(R2) CHR$(A)
240 PRINTAS, INPUTZS$ IFLEN(Z$) > A(L)THENZ$=LEFT$(Z$,A(L))
245 PRINT#2,73 NEXT X=R PRINT#1,"p "CHRS$(3) CHR$(1) CHR$(0)
250 PRINT#2,X GOT0200
900 [INPUT#1,A,B$.C.D I[FA <20THENRETURN
910 1FA <> S0THENPRINTA BS$,C.D STOP RETURN
920 [FJ$="r"THENPRINTBS
930 RETURN

36

This program asks for record numbers when retrieving records. It won’t let
you retrieve from beyond the end of the file, and if you try to write beyond the
end 1t forces you to write on the next higher record

A more advanced version than this would keep track of the 1tems by
“keys”, to index the records. For example, you would probably want to search
for a record by name, or print out labels by zip code For this you would need a
separate hist of keys and record numbers. probably stored 1n sequential files.

When working with a new relative file that will soon be very large, 1t will
save much time to create a record at the projected end of the file In other
words, 1f you expect the file to be 1000 recerds long, create a record # 1000 as
soon as the file is created This will force the DOS 10 create all intermediate
records, making later use of those records much faster.

EXAMPLE OF CREATING LARGE FILE

OPEN 1, 8, 15. OPEN 2, 8, 2, “REL,L,*“+ CHR$(60)

PRINT# 1, “P” CHR$(2) CHR$(0) CHR$(4) CHRS(1)
PRINT# 2, “END”
CLOSE 2 CLOSE 1

RECORD# 4*256+0
OR 1024

8. PROGRAMMING THE DISK CONTROLLER

The expert programmer can actually design routines that reside and
operate on the disk controller DOS routines can be added that come from the
diskette Routines can be added much the same way as the DOS Support
Program 1s “wedged’" into your memory.

BLOCK-EXECUTE

This command will load a block from the diskette containing a machine
language routine, and begin executing 1t at Jocation 0 1n the buffer until 2 RTS
(ReTurn from Subroutine) command 1s encountered

FORMAT FOR BLOCK-EXECUTE-

PRINT# file#, "BLOCK-EXECUTE"” channel, drive, track, block
or abbreviated as

PRINT# file #, “BLOCK-EXECUTE.” channel, drive, track, block
MEMORY-READ

There 15 16K of ROM 1n the disk drive as well as 2K of RAM. You can get
direct access to these, or to the buffers that the DOS has set up in the RAM, by

using the MEMORY commands. MEMORY-READ allows you to select which
byte 1o read, through the error channel.

37

FORMAT FOR MEMORY-READ:

PRINT# file#, “M-R:”” CHRS$(low byte of address) CHR$(high byte)
(no abbreviation!)

The next byte read using the GET# statement through channel# 15, the
error channel, will be from that address in the disk controller’s memory, and
successive bytes will be from successive memory locations

Any INPUT# 1o the error channel will give peculiar results when you’re
using this command. This can be cleared up by any other command to the disk
(besides a memory command).

PROGRAM TO READ THE DISK CONTROLLER’S MEMORY

10 OPEN 15, 8, 15
20 INPUT “LOCATION PLEASE”, A

30 Al= INT(A/256): A2= A- A1*256

40 PRINT# 15, “M-R:” CHR$(A2) CHRS$(A1)
50 FORL=1TO 5

60 GET# 15, AS

70 PRINT ASC(A$+ CHRS$(0));

80 NEXT

90 INPUT “CONTINUE”;A$
100 IF LEFTS$(A$,1) =*Y” THEN 50
110 GOTO 20

MEMORY-WRITE

The MEMORY-WRITE command allows you to write up to 34 bytes at a
ume tnto the disk controller’s memory. The MEMORY-EXECUTE and USER
commands can be used to run this code.

FORMAT FOR MEMORY-WRITE-

PRINT# file #, ““M-W-” CHR $(low address byte) CHR$¢high address byte)
#-of-characters, byte data

PROGRAM TO WRITE A “RTS” TO DISK:
10 OPEN 15, 8, 15, “M-W.” CHR$(0) CHR$(5), 1;: CHR$(96)

20 PRINT# 15, “M-E:” CHR$(0) CHR$(19)- REM JUMPS TO BYTE, RETURNS
30CLOSE 15

MEMORY-EXECUTE

Any routine 1n the DOS memory, RAM or ROM, can be executed with the
MEMORY-EXECUTE command.

38

FORMAT FOR MEMORY-EXECUTE.
PRINT# file#, “M-E * CHR$(low address byte) CHRS$ (high byte)
See line 20 above for an example
USER Commands
Aside from the USER!] and USER2 commands discussed in chapter 6, and

the Ul+ and Ul— commands i chapter 2, the USER commands are jumps to a
table of locations 1n the disk drive’s RAM memory.

USER COMMAND FUNCTION
Ul or UA BLOCK-READ without changing buffer-pointer
U2 or UB BLOCK-WRITE without changing buffer-pointer
U3 or UC jump to $0500

U4 or UD jump to $0503

US or UE jump to $0506

U6 or UF jump to $0509

U7 or UG Jump to $050C

U8 or UH jump to $050F

U9 or Ul Jump to $FFFA

U; or UJ power-up vector

Ul+ set Commodore 64 speed

Ul- set VIC 20 speed

By loading these locations with another jump command, like JMP $0520,
you can create longer routines that operate 1n the disk’s memory along with an
easy-to-use jump table—even from BASIC!

EXAMPLES OF USER COMMAMDS.

PRINT# 15, “U3”

PRINT# 15, “U”+ CHR$(50+Q)

PRINT# 15, “UI”
9. CHANGING THE DISK DRIVE DEVICE NUMBER
Software Method

The device number 1s selected by the drive by looking at a hardware
Jumper on the board and writing the number based on that jumper 1n a section
of 1ts RAM. Once operation 1s underway, 1t is easy to write over the previous

device number with a new one.

FORMAT FOR CHANGING DEVICE NUMBER-

39

PRINT # file #, “M-W:”” CHR$(119) CHR$(0) CHR$(2) CHR$(address+32)
CHR $(address+64)

EXAMPLE OF CHANGING DEVICE NUMBER.

PRINT# 15, “M-W:” CHR$(119) CHR$(0) CHR$(2) CHR$(9+32) CHR$(9+64)
PRINT# Q, “M-W:” CHR$(119) CHR$(0) CHR$(2) CHR$(R+32) CHR$(R+64)

If you have more than one drive, 1t’s sensible to change the address
through hardware (see below). If you must, the procedure 1s easy. Just plug n
the drives one at a time, and change their numbers to the desired new values.
That way you won’t have any conflicts

Hardware Method

It’s an easy job to permanently change the device number of your drive for
use 1n multiple drive systems The tools needed s a phillips-head screwdriver and
a knife.

STEPS TO CHANGING DEVICE NUMBER ON HARDWARE.

Disconnect all cables from drive, including power.
Turn drive upside down on a flat, steady surface.
Remove 4 screws holding drive box toge ther

Carefully turn drive nght side up, and remove case top.
Remove 2 screws on side of metal housing,

Remove housing.

N v A e~

Locate device number jumpers. If facing the front of the drive, 1t’s
on the left edge in the middle of the board.

8. Cuteither or both of jumpers 1 and 2.
9. Replace housing and 2 screws, and case top and 4 screws.
10. Re-connect cables and power up.

The jumper number s added to the old device number (8) when cut. In
other words, jumper 1 adds 1, and jumper 2 adds 2, to the device number. If
none are cut, the number 1s 8, 1f 1 1s cut 1t goes up to 9. and if only 2 is cut the
number 1s 10, If both I and 2 are cut, the number s 11.

Appendix A: Disk Command Summary

General Format PRINT# file #, command

COMMAND

NEW

corPy

RENAME
SCRATCH
INITIALIZE
VALIDATE
DUPLICATE
BLOCK-READ
BLOCK-WRITE
BLOCK-ALLOCATE
BLOCK-FREE
BUFFER-POINTER
USERI and USER2
POSITION

BLOCK-EXECUTE
MEMORY-READ
MEMORY-WRITE

MEMORY-EXECUTE
USER Commands

COMMAND FORMAT

“N

“CO new file=0.original file

“R0O new name=0:0ld name
“S0.file name

“1

“V

not for single drives

“B-R ” channel, dnive: track; block
“B-W:” channel, drive; track; block
“B-A ™" drive, track, block

“B-F ” drive; track: block

“B-P ”* channel; posttion

“Un ™ channel, dnve; track, block

“P” CHRS(channel #) CHR$(rec # lo) CHRS$(rec # h1)

CHRS$(position)
“B-E channel, drive; track, block
“M-R ¥ CHRS(address lo) CHRS$(address hi)

“M-W ” CHRS$(address lo) CHR$(address h1) CHRS

(# chars) “data”
“M-E " CHR$(address o) CHR $(address hi)
GLUn k2]

41

Appendix B: Summary of CBM Floppy Error Messages

42

OK, no error exists.

Files scratched response. Not an error condition.
Unused error messages® should be ignored.
Block header not found on disk.

Sync character not found.

Data block not present.

Checksum error in data.

By te decoding error.

Write-verify error.

Attempt to write with write protect on
Checksum error 1n header.

Data extends into next block.

Disk 1d mismatch.

General syntax error.

Invalid command.

Long line.

Invalid filename.

No file given

Command file not found.

Record not present

Overflow in record.

File too large.

File open for write.

File not open.

File not found.

File exusts.

File type mismatch

No block.

Illegal track or sector

Illegal system track or sector

No channels available.

Directory error

Disk full or directory full.

Power up message, or write attempt with DOS Mismatch.
Drive not ready. (8050 only)

DESCRIPTION OF DOS ERROR MESSAGES

NOTE Error message numbers less than 20 should be ignored with the
exception of 01 which gives information about the number of files scratched
with the SCRATCH command

20.

21

22

23

24

25.

26

27

READ ERROR (block header not found)

The disk controller 1s unable to locate the header of the requested data
block. Caused by an illegal sector number, or the header has been
destroyed.

READ ERROR (no sync character)

The disk controller 1s unable to detect a sync mark on the desired track.
Caused by misalignment of the read/write head, no diskette is present, or
unformatted or improperly seated diskette. Can also indicate a hardware
failure.

READ ERROR (data block not present)

The disk controller has been requested to read or venfy a data block that
was not properly wrtten. This error message occurs in conjunction with
the BLOCK commands and indicates an illegal track and/or sector request.

READ ERROR (checksum error 1n data block)

This error message indicates that there 1s an error in one or more of the
data bytes. The data has been read into the DOS memory, but the
checksum over the data i1s in error. This message may also indicate
grounding problems

READ ERROR (by te decoding error)

The data or header has been read mto the DOS memory, but a hardware
error has been created due to an invahd bit pattern in the data byte. This
message may also indicate grounding problems

WRITE ERROR (write-verify error)
This message 1s generated 1f the controller detects a mismatch between the
written data and the data in the DOS memory.

WRITE PROTECT ON

This message 1s generated when the controller has been requested to write
a data block while the write protect switch 15 depressed. Typically, this 1s
caused by using a diskette with a write protect tab over the notch.

READ ERROR (checksum error in header)

The controller has detected an error in the header of the requested data
block. The block has not been read into the DOS memory. This message
may also indicate grounding problems.

43

28.

29

30.

31

32.

33

34

39

50

S1.

44

WRITE ERROR (long data block)

The conuroller attempts to detect the sync mark of the next header after
wnting a data block If the sync mark does not appear within a
pre-determined time, the error message 1s generated. The error 1s caused by
a bad diskette format (the data extends into the next block), or by
hardware fatlure.

DISK ID MISMATCH

This message 1s generated when the controller has been requested to access
a diskette which has not been initialized. The message can also occur if a
diskette has a bad header.

SYNTAX ERROR (general syntax)
The DOS cannot interpret the command sent to the command channel
Typically, this 1s caused by an illegal number of file names, or patterns are

tllegally used. For example, two file names may appear on the left side of
the COPY command.

SYNTAX ERROR (invalid command)
The DOS does not recognize the command The command must start in
the first position.

SYNTAX ERROR (long line)
The command sent ts longer than 58 characters.

SYNTAX ERROR (invalid file name)
Pattern matching 1s invalidly used in the OPEN or SAVE command.

SYNTAX ERROR (no file given)
The file name was left out of a command or the DOS does not recognize 1t
as such. Typically, a colon (.) has been left out of the command.

SYNTAX ERROR (invalid command)
This error may result 1f the command sent to command channel
(secondary address 15) 1s unrecognizable by the DOS

RECORD NOT PRESENT

Result of disk reading past the last record through INPUT#, or GET#
commands. This message will also occur after positioning to a record
beyond end of file in a relatwve file. If the intent is to expand the file by
adding the new record (with a PRINT# command), the error message may
be ignored. INPUT or GET should not be attempted after this error 1s
detected without first repositioning.

OVERFLOW IN RECORD

PRINT# statement exceeds record boundary. Information 1s truncated.
Since the carriage return which 1s sent as a record terminator 1s counted n
the record size, this message will occur if the total characters in the record
(including the final carriage return) exceeds the defined size.

52

60

61

63

64

65

66.

67

70

71.

FILE TOO LARGE
Record position within a relative file indicates that disk overflow will
result

WRITE FILE OPEN
This message is generated when a write file that has not been closed 1s
bemng opened for reading

FILE NOT OPEN

This message 1s generated when a file 1s bemng accessed that has not been
opened 1n the DOS. Sometimes, in this case, a message 1s not generated,
the request 1s stmply ignored

FILE NOT FOUND
The requested file does not exist on the idicated drive

FILE EXISTS
The file name of the fiie being created already exists on the diskette

FILE TYPE MISMATCH
The file type does not match the file type n the directory entry for the
requested file.

NO BLOCK

This message occurs 1n conjunciton with the B-A command. It indicates
that the block to be allocated has been previously allocated The
parameters mdicate the track and sector available with the next highest
number. If the paramerers are zero (0), then all blocks higher in number
are mn use,

ILLEGAL TRACK AND SECTOR

The DOS has attempted to access a track or sector which does not exist in
the format being used This may indicate a problem reading the pointer to
the next block.

ILLEGAL SYSTEMTORS
This special error message indicates an 1llegal system track or sector

NO CHANNEL (available)

The requested channel 1s not available, or all channels are mn use A
maximum of five sequential files may be opened at one time to the DOS.
Direct access channels may have six opened files.

DIRECTORY ERROR

The BAM does not match the mternal count There 1s a problem m the
BAM allocation or the BAM has been overwritten m DOS memory To
correct this problem, reinitialize the diskette to restore the BAM in
memory. Some active files may be terminated by the corrective action
NOTE- BAM = Block Availability Map

45

72

73

74

46

DISK FULL

Erther the blocks on the diskette are used or the directory 1s at its limit of
152 entries for the 2040, 3040, and 4040 or 243 entries for the 8050.
DISK FULL 1s sent when two blocks are available on the 8050 to allow
the current file to be closed

DOS MISMATCH (73. CBM DOS V2.6 1541)

DOS 1 and 2 are read compatible but not write compatible. Disks may be
mnterchangeably read with either DOS, but a disk formatted on one verston
cannot be wntten upon with the other version because the format 1s
different. This error 1s displayed whenever an attempt 1s made to write
upon a disk which has been formatted m a non-compatible format. (A
utility routine 1s available to assist n converting from one format to
another.) This message may also appear after power up

DRIVE NOT READY
An attempt has been made access the 1541 Single Drive Floppy Disk
without any diskettes present in exther drive.

APPENDIX C: Demonstration Disk Programs
1. DIR

3 OFEHE . 2.0)%
TOPFIMTY BOTO 1R

1@ DFENL . &8 3@

SR RETHL AFLWBY

i@ GET#1.A%. B¥

GET#1.Ag. Bs

D C=R

=8 IF AFZ"" THEH C=RSC7A%H

TEOIF BFLU"Y THEM C=C+ASCBE #2568

o8 FRINT A" MIDS STRECC .20, TREC3,, -,

Se GET#1.Bf IF ST 0@ THEMW 12202

1968 IF B3 L2CHREC 340 THEH 30

1160 CET#1.B$ IF EXICHFF 34 THEH PFRIMTEX. GOTO114
1&g GET#1.E1 IF EF=CHREr32) THEH 128

12@ PRINT TAB 18y CE=""

140 CE=C$+EE GETH#1,B$ IF BEIHY THEM 148
158 FRINT"@"LEFTS/CE 3)

1e@ ET T$ IF T$O"" THEM GOSUE Z00@

178 IF 5T=2 THEW 29

1328 FRIWMT" BLOCYKE FREE"

laiﬂ CLOSEL GOTO 1agse

IF T#="0" THEM CLOSEL EMD

GET T# IF Tg="" THEMN 2026&

“E“a FETURM

42380 REM DISK COMMAMD

GELE Cg=m" PRINT">".

4@11 GETBE IFRF="" THEM4D11

4@12 FRIMTES. IF BS=CHR#$(13, THEMN 4820
40173 C¥=CE+B$ GOTO 4211

4828 PRINTH#Z .C$

088 FPRTHT" & .

1A GETH#Z.RA$ PRINTAS, IF ASCCHRECALIDGOTOSB1O
SRR PRINT @

180883 FRIMT "D~DIRECTORY"

18213 PRINT “Z~DISK COMMAHD"

18628 FRFIMT "0-GulT FROGRAM"

18A23@ FRIMT “S~DISK STATUS ©

10128 GETA$ IFAL=""THEMI2100

12228 IF A$="D" THEH 18

1932@ IF As="." ORF AF="L" OF A$=" " THEM 4063
183218 IF As="0" THEHW EHD

18328 IF A$="5" THEH S2a2

12539 GOTO 16188

1%

2. VIEW BAM

100 REM e sl ol gl o ol aolok s s ok

131 REM % VIEW BRM FOR WIC & 64 DISK #

182 REM skl sk o

185 OFEN1S5.8.15

1183 PRIMT#1%."1@" HUfF="MN/A HAA HAA NAA HARY Z4=1
128 OPEM2. S‘¢-"#"

13@ xxsv-h N
1468 x$=")DERPRREEN IIIIIIIII.IP
158 DEF FMSrZ) = ZTS~IHTI(S/8Y%8) AMD (SBCINT(SA8235

47

160 FRIMT#15.%U1 ",2.8:18.8
172 FRIMNT#1%5."B-P" .21
188 PRINT"I).
188 Ww=2z #=1 GOSUB43E0
286 FORI=BTO28 PRINT PRIMTY TI'RIGHTS/STRECI+" .30 HEKT
210 GET#2. A
220 GET#2, AF
238 GET#Z . A%
248 TS=
250 FORT=1TOL7 GOSUER45A
260 W=22 W=T+4 BOSUB4ZS GOSUBIHB HEXT
27m FORI=1TO2008 HEAXT PRIMT"ID
Z2EA =22 K=1 GOSUBR430
298 FORI=BTO20 FRIMT PRIMT" THRIGHTS(STRECIS+" 7. 30, MEXT
AR FORT=18TD3S
218 GOSUR4SE
2R s=T~13 (05UB436 GOSUBSIB MExT
238 FORI=1TO1086 HEXT
343 PRINT" TInTaI0g"
5@ FRINT#1S, "B-F". 2. 144
6@ ME="" FOPI=1TOZY GETHZ.AF HE=HE+AE MEXT
AT OFFINTY YHE" "TS5-17, "BLOCKS FREE"
30 FORI=1T048@8 HEAT
IPA PRINT"TT
4af THPUT NRRFHOTHER TISFETTE HINEE A%
H18 TFAF="""THENRUH
43¢ IFAFCE " THEHEND
430 FRIMTLEFTS(YS. W OLEFTS HE "I,
446 FETURH
453 HETH2.SC$ SC=RSCIRIGHTS CHREIBY+SCE. 100
488 TS=TS+S0
478 GET#Z.RF IFA$=""THEHA$=CHRE B
420 SBIAY=ASCCASY
498 GET#2.A% TFA¥=""THEHAF=CHFE A
SRR SR Y=ASOAFD
=1@ GETH#D.AT TFRF=""THENAF=(HR$/ D)
SPE SR 2i=RSCIASY
T RETURM
FRIMT A RIGHTE STRECTY 10 "IET)" .
REM PRIMTT" MELH SSROET "SROLYY CSBr2r=CHRECAS
IFT: 24RANDS=13THEN FRIMTMIDS HUF . 24, 1), GOTOGER
T@ FORG=ATOZ8
TFTCISTHEHEZE
TET “2AHDS= 1 7 THEM PRINTHMIDSCHUS. 24 1. GOTOSES
TFT 24AHDS=1STHEM FRINFMIDS (LI 24,10 . GOTOSED
TFT>24ANDS=19THEMFR IHTMI DS MUS, 24 13, GOTOEE
i OTF TS 1 PANDS=2@THENPRINTMT DS (HUS 24, 12, Z4=24+1 GOTUERD
3 PRIHTY &
TF FHA¢S =@ THEM PRIMT"-+". GUTOEER
A RRTHT B4, FEMPIAHTESTRS S 10,24, 1. GOTOP2
A OPFIHT TR
A HENT
g FETLRM

48

3. DISPLAY T&S

TFEMEES bR RBBEF S e F SRR E A
FEM#* DISPLAY AWY TRACK $ SECTOR
I FEM# M THE DISK TO THE SCREEM #
FEM¥ MF THE FFINTEFR *
“FM++*#ﬁ+»waa*v»»»v#t»*++t¢+«¢»#»
FRIHT TTal0.
FRIMT"DISFLAY ELOCK COMTEMTS-
5 FRIMT! "
FEMA AR h ke h 4 b ki A b h b Bk RERR R

7 REM% SET PROGKAM COMSTRHT +

G REMRESRHRERE R B FEAE PP FEEF D b

A SR 0 MLERCHRE O HEAEST@1 2 3456 TE9REC DEF

Fég="" FORI=E4 T 3% Fig= F-£+"a”+FHP$ I.+"®" HEAT 1

BS¥a' M FOP T=19% TO 223 S5$=SSE+"@'+CHRS(15+ "M% NEXT 1
DIM ASCLE, MECE
Ds="gn
3 PRINT" EMCREEHARBNRENNDP NI S [HTER
GETTIS TF TTH="" THEM:S
TF TT8="5" THEMRR THT 5 MsE CREEHS"
TF TT$="F"THEHFRITHT" MR R THTER®"
7 OPENIS.S.15. " 1" +DF GUSUE 650
DFEH4, 4

OFEM 2.5.2."4#" GOSUB £58
B I 0 o o S A
FEM#® LOAD TRACK RAWD SECTOR L]
3AR REM# THTO DIsk BUFFER ¥
FLA FEMHFRESRARRAEREEDFFSF RN SO F
2@ IMPLUT"«mBRITRACK . SECTOR.T.&
338 IF T=A QR T>35 THEM FRIMT#15:"I1"D$ CLOSEZ CLOSE4 CLOSELS PRIMTYEMD® EMD
4@ TF JI¥="5" THEW FRINT"SBMTRACK"T" SECTOR"S"m"
341 IF JIE="F" THEHM PRINTH#4 PRINTHS. "TRACK T SECTOR'S PRIMTH#4
GEA PRIMT#15. "1 2908, 7.5 GOSUBSSE
FEE REMNE KRR AR A R R
ITR FEM¥ READ BYTE @ OF DISK RUFFER #
HFA REPHHARA ok A A AN AR AR
400 FRIMT#15, "B~p 2.1
418 PRIMTH#1S, "M-R"CHR$(ACHRESS
420 GET#15.AFCR) IFATC A" "THEMRAS C Ay =HL$
428 IF JIE="S"THEM4 &
30 IF JI%="F"THEN4ED
A1 RE MRS AR AN AR oA AR A
432 REM# READ & CRT DISFLAY »
437 REM# REST OF THE DISK BUFFER #
A 34 R E MR AN A A A A ok A o ok
436 k=1 HROLY=ASCCAS QY)Y
422 FOR T=R TO €3 IF J=32 THEW GOSUB 710 IF Z$="H"THEN J=89 GOTO 458
448 FOR I=K TO 32
442 GETH#Z AFCI) IF AFII)="" THEM AL I =HLE
444 IF K=1 AMD 142 THEM MRC2)=ASCALCIs)
4d¢ HEXT I K=@Q
445 A¥="" BE=" " NxJk4 GOSUR 798 AF=AgF+" *
450 FOR I=@ TD 3 W=ASC(RETYY GOSUR 79@
452 CE=AF1) GOSUR 258 B=RE+C$
454 MEXT 1 IF TJ¥="g" THEW FRIMTASES
458 MEXT I GOTOS71

49

B FEM# €€k A bk A R doh RN ik S
» REM# READ & FRIMTER LISFLAY ¥
P E I A 0 e A o A
k=1 MBC1y=RASCORE D .
FOFP J=8 TO 19
FOR I=k T3 15
HETHZ AFCIY TF AFCTo="" THEH A%’ 1.=HLE
1F k=1 AMD 142 THEM HBr& =ASCrRgErIn:
MEAT I F=@
S fE="Y Bg=" Y H=TH16 GOSUE 790 As=AS+"
FOR 1=8 TO 1% H=ASCCA$- 1) GOSUEB 75@ IF Z$="H"THEM J=42 ' GOTO 571
CE=FAF 1+ COSUE 250 RE=RE+Cs
HE®T T
ge IF TTE="P" THEH FRTHTH4 A$ES
3 HEHRT T GOTOS?
PEM*%&&&&%&ﬁ#*#*%*****#*ﬁ*#**#***
2 REMR MEXT TRACK AHD SECTOR *
psm&*«*#*##**#*&#*****#**#*#*ﬁ###
FRIMT*HEXT TRACK AND SECTOR"HEC1¥HBr2 tw”
PRIMTIIN WO WAHT MEXT TRACH AHD SECTORY
GET 2% IF Z4="" THEHTS@
IF s—"”" THEM T=HEBr1» S=HBr2 GOTO3ZA
TF Z&="H" THEH %z
HOGOTO S%8
GG M AR A A A A D A b A
7 REM# SUBROUTIMES ¥
RE M A A AR A AR R b B ¥
REM# ERROR ROUTTHE +
A FEMEEFEERDE kb b EERS FERFREFEFPF EFEY
THFUT#L®, EH . EM$. ET.ES IF EM=8 THEH FETURHN
FRIMT"@DISK EPFOFMUEN.EME. ET ES
A EMI
A FETRRRA RN BT E EFF B AN
FEM® SCREEH COMTIHUE MESSAGE *
REMARERSSRERREEF RS D AR PED D KRR ¥
FFRTHT SRR O T THLUIE Y
5 RETZ% TF Z¥='" THEM 790
TF Z#="H" THEHN FETLRH
IF Z#42"w" THEM 75
cf PRIMTTITRACK" T Y SECTOR'S °01 PETURH
T REM kR EEREFE R FFRPFEEEE RS AN HHEEF
1 FEMA TISK BYTE TO HEW FRINWT #*
FEMAF A RN K b B D H PR e Rk
H1=THT MA1E T AE=RE+MTIE HAE AT+T 10
5 RASETHT O M= E#A] 1 RE=RE+MITFCHYE AZ+T . 10
4 AF=A$+SFE RETURN
G REM ¥4 #4 bmgihb Wb b b £ RN H b
1 REME TSk BYTE TQ ASC DTSPLAY #
e FEMR THARACTER .
FEM# A 900 K E R EH £ E 6 FREEEN R b
A OTFE PESorEs TRY CTHEH CE=0 " RETLRH
TF FASm el %7 Y OF AT CERRLSI THEH #LTHPH
LI TU ROk AR FEC e 18T 3 RETHRN

50

4. CHECK DISK

1 REM CHECK DISH ~- vEF 1.4
Z DM=8 FEM FLOFFY DEYWICE MUMBER

% DIMTr1@d@, DIMSC1@@> REM BRD TFHFK; SECTOF AFRAY

D OPRINT " I
18 FRIMT” CHECK DISK FROGRAM™
12 PRIMT"
20 Dg="g"
32 OFEM1S,DH, 1S

35 FRINT#1S.")"D$
3% WE=RMDCTI o %255

D2 A$="" FORI=1TOZ2TS AF=RE+CHRECZTSEANDOI+HR) 0 HEXT

&0 GOSUBSea

7@ OPEMZ DM 2. "#"

8@ PRIMT FRIMT#Z.A%.

a3 T=1 S=a

@ PRIMT#1S "B~-A "I¥. T.5

18@ THPUTH#1S.EM. EME,.ET . ES

11@ IFEM=0THEH132

115 IFET=@THEMZ@@ REM EMD

120 FRIMT#13."E~A "D$.ET.ES T=ET S=ES
138 PRIMT#1%5."U2"2."D&.T.5

134 MB=tB+1 FRIMT" CHECKED BLOCKS'"HEB

13T FRIMT" TRACK RRTT. " SECTOR [LLLIE- ey

142 THFUT#1%.EM.EM$.ES . ET

158 IF EN=0THEMST

1E@ TrJu=T SFJi=8 T=J+1

165 FPIHT“HMBHD BLOCK amI".T7.3""

17@ GO0T08S

20a PRIHT#lS-“I”D$

21@ GOSURIan

212 CLOSEZ

215 IFJ=@THEHMFRIMT " ¥pemeRC EAD EBLOCKS!" EMD
217 OFEMZ.DH. 2, "#"

218 FRINTWARAD BLOCKS™ . "TRACK" . "SECTOIF!
222 FORI=ATOTI-1

230 PRIMT#1%, "B~R " .0F.Tr1 . 801y

248 FRIMT, . TCT L 5010

258 HEAT

268 PRIMT"9" I"BAD BLOCKS HAVE BEEH ALLOCATER"
278 CLOSEZ EMD

f@a IMPUT#1%.EM.EM$,ET.ES

S1g IF EM=0 THEH RETURH

226 PRIMT"WMERRFOR #"EM,EM$.ET.ES""

930 FRINTH#1S5,"1"DP%

5. PERFORMANCE TEST

1egn FEM PERFOFMAMCE TEST 2.0
1816

LAz8 FEM WIC~28 AHD COMAMDDORE &4
1836 REM STIMGLE FLOFFY DTSK DRTVE
1846

l@%@ OFEH |8 1% DPEMLS 8,15
1258 ki1
A7 lTi—mTWifLT‘

51

Lot pT= 30

TESE FRTHT TN e !
| |3 FRIMTY FERFORMAMCE TEST"
11ty FRINT" !
1123 PRIWT

115 PRTHTY THSERT SORATIH"

1142 PEYHT

L15a FRIMT" DISKETTE TH DRTWE"
FFTHT

117 FRINT'S FRENS aRE TURHR!

1183 FRTNT

1130 FRIMT" LHEMH FEADC A"
L2 FOR T=8 TO0 5@ GET RE HENRT

1216 GET A% TF AETTHREOTIZ THEM 1218

1A
1256
TTE="AAGAAA"
TT=18
FRTHTHL, "M TEST DISK BE”
C1g=" TTSK MEW COMMAMT CeTHEE 13

2F="0 WATT ABOUT 28 SECCOMDS"
CE=C1F+02F DOLUR 1540

IF TI<HTTHEHW137&

PRINT BETSTEM 14”7

PRIMT"® HOT FESPOHDING!
B FFIWTY CORFECTLY T COMMARHTSY
ROSHER 1828

A FRINT' SDRIVE PASS"

FRIHT" MECHAMTTAL TESTH"
TT=21
i OPEW 2.8.2."8 TEST FILE.S. WY
CCe="0FEM WFITE FILE" GREUR 1948
CH=2 CCE="WRITE DATA" GOSUR 1532
3 CTE=NCLOSE "+CCS GOSUB 1948
E,2."9 TEST FILE.S.R"
C OFPEH RERD FILE” GOsUB 1848
CH=Z GOSUR 1399
FRPINT#L. "S@ TEST FILE"
B CrE="SCRATCH FILEA" TT=1 GOSUE 1848

TT=21

28 OPEM 4.8.4,"4"

33 HME= L HPHD T #2544+ HME A ANDZES FRIMTH1 “B~F" 4. HHZ
HHE="" FOR I=1 TO 255 HHE=HHE+CHRECT) HNEAT

A FRIMT® 4. HHE,

A FRIMT# 1,002 ".4.2.L.T7.@

CLE="WRITE TRACK"+LT$ GOSUB 1848

1580 FRIMT#1."U2 *.4.@.1.9

1993 CCE="WRITE TRACK 1" GOSUB 184
1F88 FRIMT#1."01 "4 @.L.T7.8

1610 CCE="FERD TRACK"+LT$ GOSUE 1848
1620 FRIMTH#L."UL ». 4.8, 1.8

146238 CCF="RERD TRACK 1" GOSUB 1848
1648 CLOSE 4

1676

1eRR

52

PRIMT"® UMIT HRS PRSSED"
PRIMT" FERFORMRAHCE TEST!"
PRIMT"® FUILL DISKETTE FROM"

A PRINT"® DRIVE BEFORE TLURMIMG"

PRIMT" POMER OFF."
END

FRINT" MLOHTIMUE (YAMa 2,
FOR T=8 TO 5@ GET AE HEXT

A GET A% IF A$="" THEH 1778

FRIMT RE"M"

IF A$="H" THEH END

IF Ag='%" THEW FETUPH
GOTO 176

B FRINT CC%

IMPLIT# 1 EMW EM$ ET ES

@ PRIMNTTREr125""EM.EM$.ET.ES.""

IF EH<C2 THEW RETURM

373 PRINTY S UMIT 1S FRILING

195G
1966
1570
1 SFE
1 R3G
CEEE
JR1a

2
24
-]
SRR
TRE

FRINTH FERFORMAMCE TEST"
THE=T1& GOSUR 1750 TIs=THME RETIIFH

FRIMTYWRITIHNG DRTAY

FAR 1=1882 TN 2600 FRIMTH#CH, I HE=T
GOSLIBLESA

CLOSE TH RETUFH

PRTHT"READTHG DATA

LETAF

FOR I=1083 TO 2008

IMPLITH CH.J

IF 1431 THEMW PRIWT'S@RERD ERROR " GOSUE

HF A=A
M OsSF O RETLURN

=

53

APPENDIX D: DISK FORMATS

NOTE
Not to scale

/ POINTLRS TO LINK N
/ TOGETHLR ALL BLOCKS N
WITHIN A T]LL
/ AN
[4 4 4
3 s
CHLCK- = | = | 254BYTLS | CHICK- | Gap
SYNC | 08 | 101|102 | TRACK| SLCTOR | GUEK" | GaP 1| SYNC | 07 | 2 | £ | 254 BYTLS e >
E-] -]

1540/1541 Format: Expanded View of a Single Sector

54

Block Distribution by Track

2040, 3040 Block or
Track number Sector Range Total
11017 0to 20 21
18 to 24 O0to 19 20
250 30 Oto17 18
31to25 Otol6 17
4040 Block or
Track number Sector Range Total
1to 17 0to 20 21
1810 24 O0to18 19
25to 30 0to 17 18
31to 35 Oto 16 17
8050 Block or
Track number Sector Range Total
1to 39 O0to 28 29
40to 53 0to 26 27
54 t0 64 0to 24 25
65 to 77 0to 22 23

1540/1541 BAM FORMAT

Track 18, Sector 0.

BYTE CONTENTS DEFINITION

0,1 18,01 Track and sector of first directory block.

2 65 ASCII character A indicating 4040 format.
3 0 Null flag for future DOS use.

4-143 Bit map of available blocks for tracks 1-35.

*1 = available block
O=block not available

(each bit represents one block)

55

* STRUCTURE OF SINGLE DIRECTORY ENTRY

BYTE CONTENTS DEFINITION
0 128+type File type OR’ed with $80 to indicate properly
closed file
TYPES 0= DELeted
1 = SEQential
2 =PROGram
3=USER
4 = RELative
1.2 Track and sector of 1st data block.
3.18 File name padded with shifted spaces.
19-20 Relative file only: track and sector for first side
sector block.
21 Relative file only. Record size.
2225 Unused.
26-27 Track and sector of replacement file when OPEN@
1s tn effect.
28-29 Number of blocks 1n file low byte, high byte.
SEQUENTIAL FORMAT
BYTE DEFINITION
0-1 Track and sector of next sequential data block
2-256 254 bytes of data with carriage return as record terminators.
PROGRAM FILE FORMAT
BYTE DEFINITION
0,1 Track and sector of next block in program file.
2-256 254 bytes of program mnfo stored in CBM memory format (with

key words tokenized). End of file 1s marked by three zero bytes.

56

1540/1541 DIRECTORY HEADER

Track 18, Sector 0.

BYTE CONTENTS DEFINITION

144-161 Disk name padded with shifted spaces

162-163 Dusk ID.

164 160 Shifted space

165-166 50,65 ASCII representation for 2A which 1s DOS
version and format type.

166-167 160 Shifted spaces

177-255 0 Nulls, not used.

Note ASCII characters may appear 1n locations 180 thru 191 on some diskettes.

DIRECTORY FORMAT

Track 18, Sector 1

BYTE DEFINITION

0-1 Track and sector of next directory block.
2-31 *File entry 1

34.63 *File entry 2

66-95 *Fie entry 3

98-127 *File entry 4

130-159 *File entry 5

162-191 *File entry 6

194-123 *Fie entry 7

226-255 *File entry 8

57

RELATIVE FILE FORMAT

DATA BLOCK

BYTE DEFINITION

0,1 Track and sector of next data block.

2-256 254 bytes of data. Empty records contain FF (all binary ones) in
the first byte followed by 00 (binary all zeros) to the end of the
record. Partially filled records are padded with nulls (00).

SIDE SECTOR BLOCK

BYTE DEFINITION

0-1 Track and sector of next side sector block.

2 Side sector number (0-5)

3 Record length

4-5 Track and sector of first side sector (number 0)

6-7 Track and sector of second side sector (number 1)

8-9 Track and sector of third side sector (number 2)

10-11 Track and sector of fourth side sector (number 3)

12-13 Track and sector of fifth side sector (number 4)

14-15 Track and sector of sixth side sector (number 5)

16-256 Track and sector pointers to 120 data blocks

58

(x commodore

COMPUTER

